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(t — x) domain, pattern-based multiple separation

Robert G. Clapp and Morgan Brown*

ABSTRACT

Pattern-based signal/noise separation is a common technique to suppress multiples. It can
be formulated in the t — x domain using non-stationary Prediction Error Filters (PEF).
One can obtain akinematically correct model of the multiples by downward continuation.
The CMP gather and the corresponding multiple estimate are characterized by a space
varying PEF. After applying a simple separation technique one can obtain CMP gathers
where the multiple energy is significantly attenuated. The method is applied to synthetic
and 2-D field CMP gathers.

INTRODUCTION

Multiple suppression is one of the largest problems facing the seismic industry. One common
technique are the family of approaches generaly refered to as ‘model based’ (Berryhill and
Kim, 1986; Wiggins, 1988). These methods work by first getting an estimate of the mod-
els through downard continuation (Berryhill and Kim, 1986), computing the first term of the
Neuman series (Ikelle et al., 1997), or some other method. Next, the primaries are estimated
through some type of filtering operation using the estimated multiples. Recently, the prob-
lem has been formulated as a signal-noise separation problem in the frequency domain (Spitz,
1999; Bednar and Neale, 1999). These methods operatein the f —x domain with the limiting
assumption that the data are time-stationary.

Until recently the signal-noise method proposed by Spitz (1999) could not be formulated
in the time domain because it involves dividing by afilter describing the multiple. Claerbout
(1998) discovered that multi-dimensional PEFs can be mapped into 1-D, therefore making it
possible to do inverse filtering in the time domain. The stationarity assumption inherent in
PEF estimation can be overcome by estimating non-stationary filters (Crawley et al., 1998).
As aresult, Spitz's (1999) method can be formulated to work with time domain PEFs (Clapp
and Brown, 1999).

In this paper we show how the time domain formulation of Spitz’s approach can effectively
attenuate multiples. We apply the method to a2-D synthetic dataset and show that it iseffective
in both ssimple and complex areas. We then apply it on a2-D real CMP gather. We show that
our technique is successful in the attenuating most of the multiple energy with little loss of
primary energy.
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METHODOLOGY

Signal to noise separation

Consider the recorded datad to be the simple superposition of “signal” s, i.e., reflection events,
and “noise’ n, i.e.,, multiples. d = s+ n. For the special case of uncorrelated signal and noise,
the so-called Wener estimator is a filter, which when applied to the data, yields an optimal
(least-sguares sense) estimate of the embedded signal (Castleman, 1996). The frequency re-
sponse H of thisfilter is

Ps
H= ,
Pn +Ps

D)

where Ps and P,, are the signal and noise power spectra, respectively. Abma (1995) and Claer-
bout (1999) solved a constrained least squares problem to separate signal from spatially un-
correlated noise:

Nn ~ O
€eSs ~ 0 2
subjectto < d=s+n

where the operators N and S represent t — x domain convolution with non-stationary PEF
which whiten the unknown noise n and signal s, respectively, and ¢ is a Lagrange multiplier.
Minimizing the quadratic objective function suggested by equation (2) with respect to sleads
to the following expression for the estimated signal:

5= (N"N+¢25"s) "N"Nd 3)

By construction, the frequency response of a PEF approximates the inverse power spectrum
of the data from which it was estimated. Thus, we see that the approach of equation (2) is
similar to the Wiener reconstruction process. Spitz (1999) showed that for uncorrelated signal
and noise, the signal can be expressed in terms of a PEF, D, estimated from the datad, and a
PEF, N, estimated from the noise mode!:

S=DNL (4)

Spitz' result applies to one-dimensional PEF's in the f — x domain, but our use of the he-
lix transform (Claerbout, 1998) permits stable inverse filtering with multidimensional t — x
domain filters. Substituting S = DN~ and applying the constraint d = s+ n to equation (2)
gives

Ns ~ Nd
eDN"!s ~ 0. (5)

Iterative solutions to |east-squares problems converge faster if the data and the model being
estimated are both uncorrelated. To precondition this problem, we again appeal to the Helix
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transform to make the change of variables x = Ss=DN~!s or s = ND~x and apply it to
equation (5):

NND x ~ Nd
ex ~ 0 (6)

After solving equation (6) for the preconditioned solution x, we obtain the estimated signal by
reversing the change of variables: 3= ND~x.

Filter estimation

A PEF (a) by definition is the filter that minimizes the energy when convolved with the data
(d). To estimate a space-invariant filter, this amounts to applying the fitting goal,

0~ Da. )
When estimating a space-varying PEF, the number of filter coefficients can quickly become
more than the number of data points, creating an underdetermined problem. Crawley et a.

(1999) proposed estimating space varying filter with radial patch. The fitting goals become

0 ~ DA Y (8)
0 ~ eA L,

where A~1 is a preconditioning operator that smoothes in a radial direction (assuming that
dips will be more consistent along radial lines, Figure 1.
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EXAMPLE

Synthetic example

To test the method, we chose an elastic synthetic data generated by BP. Figure 2 is the p-wave
velocity model used to construct the data. Within the model, multiple behavior ranged from
rather simple (away from the salt body) to much more complex (along the edge and under
the salt). We then modeled the multiples by doing frequency Kirchoff upward continuation of
both the sources and receivers to the sea-floor. For our first test we chose a CMP gather at 1
kft, away from the salt edge. The left panel of Figure 3 shows the original CMP gather. The
center panel shows the upward continued gather at the same location. The right panel shows
the predicted signal for the CMP gather. Note that we have done a good job eliminating the
multiples with little loss of primary energy. Our second test was more of challenge. We chose
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Figure 2: Synthetic velocity model
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a CMP through the salt at 44 kft (Figure 4). Note that both the primary and multiple energy
is significantly more complicated than in the previous example. The right panel of Figure 4
again shows our primary estimate. In this case our primary estimate isn't quite as good as
Figure 3 but we still have done an acceptable job reducing the multiple energy.

Real data

For the real data example, we chose a dataset provided by Mobil. The data previously was
by Lumley et al. (1994) using a hyperbolic radon technique and by Guitton (2000) with L1
hyperbolic multiple attenuation scheme. We found the water bottom and upward continued
the data. The left panel of Figure 5 isa CMP gather from the data and the middle panel is our
multiple estimate. If we look at our primary estimate (the right panel of Figure 5) we can see
that we have removed a little primary energy and have little multiple energy in the gather, but
overal, we have done an acceptable job attenuating the multiples.
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Figure 3: CMP gather at one kft. The left panel isthe original CMP gather, the middle is the
muitiple estimate, and the right panel is our signal estimate. | bob2-bp-cmp1 | [ER]
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Figure 4: CMP gather at 44 kft. The left panel is the original CMP gather, the middle is the
muitiple estimate, and the right panel is our signal estimate. | bob2-bp-cmp2| [ER]
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Figure 5: Multiple suppression result on real data. The left panel is the original CMP
gather, the middle is the multiple estimate, and the right panel is our signal estimate.
| bob2-mobil-cmp2| [ER]
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PROBLEMS

Currently, the major weakness of this approach is its sengitivity to parameter choice. The
separation fitting goals (6) apply the inverse of a non-stationary PEF. If that PEF isn't stable,
the separation of the multiples and primaries is not possible. To get a stable filter we can in-
crease € in our filter estimation (9). Unfortunately, increasing e decreases the quality of our
prediction. By changing the size of our micro-patches, we can usually get a stable filter while
obtaining a good prediction. At this stage we haven't figured an algorithm that can automati-
cally change micro-patch size to obtain the desired combination, a stable non-stationary PEF
that can satisfactorily predict the data.

CONCLUSIONS

On early tests, the separation technique was successful in suppressing multiples. Until the
method can be made more stable, it can not be used in a production environment.
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