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Regularizing tomography with non-stationary filters

Robert G. Clapp1

ABSTRACT

The ideal regularizer is the inverse of the model covariance matrix. Often the model co-
variance matrix has a complicated structure that is difficult to characterize. Non-stationary
prediction error filters (PEF) have the ability to describe complicated model behavior.
Non-stationary filters are effective regularizers for missing data and tomography prob-
lems.

INTRODUCTION

Most geophysical problems are either under-determined or mixed-determined, requiring some
type of regularization. The ideal regularizer is the inverse model covariance (Tarantola, 1986).
In previous papers I have shown that a space-varying operator composed of small plane-wave
annihilation filters, or steering filters, can be an effective regularization operator (Clapp et
al., 1997, 1998; Clapp and Biondi, 1998, 2000). Steering filters are best suited to describing
models with relatively simple covariance functions. For a certain class of velocity models,
such as models with discontinuities, steering filters have difficulty accurately describing model
covariance.

PEFs are able to describe a much wider class of models than steering filters. To robustly
estimate a PEF we must have a model with stationary statistics, something that is rarely true
with seismic problems. We can often satisfy the stationarity requirement by breaking up our
problem into small patches (Claerbout, 1992b). Unfortunately, we can only make our patch
size so small before we can’t generate sufficient statistics to estimate our PEF (Crawley et al.,
1999).

An alternative approach, proven to be effective when dips change quickly, is to estimate
PEFs in micro patches with a non-stationary PEF (Crawley et al., 1999; Clapp and Brown,
1999, 2000). When dealing with discontinuities, regularizing with a non-stationary PEF can
be more effective in describing the model covariance than steering filters. Non-stationary
filters do a better job honoring sharp boundaries and characterizing complex models.

I will begin by showing how steering filters perform poorly at discontinuities. I will then
show how to build and estimate a non-stationary PEF. I will use the non-stationary PEF in
the context of a missing data problem. I will conclude by using a non-stationary PEF for
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regularization to tomography.

BACKGROUND

In general, geophysical inverse problems (inverting for some model (m), given some (d),
while applying some operator (L)) are ill-posed. A classic example of this is the missing data
problem (Claerbout, 1999). The goal of the missing data problem is to interpolate intelligently
between a sparse set of known points. For example, let’s take a synthetic velocity model with
an upper horizontal reflector, an anticline between two unconformities, and updipping layer at
the bottom of the model. Suppose we have velocity measurements at several wells (Figure 1)
and you would like to interpolate it onto a regular 2-D mesh.

Figure 1: Left panel shows a synthetic velocity model, right panel shows a subset of that data
chosen to simulate well log data. bob3-well-logs [ER]

The geophysicist might follow the approach described by Claerbout (1999), first interpo-
lating the irregular data onto a regular mesh by applying some type of binning operator, B,
then defining a fitting goal that requires the model to fit the data exactly at the known points
(J),

JBd Jm. (1)

At model locations where there are no data values, we want the model to be ‘smooth’, therefore
we will use Tikhonov regularization to minimize the output of a roughening operator applied
to the model,

0 Am. (2)
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Figure 2: Interpolation result after
200 iterations using an inverse Lapla-
cian regularization operator. Note the
edges effects at the top and bottom of
the model due to using a internal con-
volution operator. bob3-qdome-lap
[ER]

If we don’t have any other knowledge about our model, an isotropic operator like the Laplacian
might be a logical choice for A since it leads to the “minimum energy” solution. If I apply the
fitting goals implied by (1) and (2) for 200 iterations using the Laplacian for A I get Figure 2.
The result is what has been euphemistically referred to as the ‘ice cream cone result’ (Brown,
1998). By spreading information isotropically, the model goes smoothly from our known
points to some local average. We see little to no continuation of layers, which is generally a
thoroughly unsatisfactory result.

Covariance

With no other information, the Laplacian might be the best regularization operator that we
could use. But if we know something else about out model, can we do better? According
to Tarantola (1987), we should be using the inverse model covariance for our regularization
operator. The statistics of the model vary spatially, but by breaking up into four patches,
one above the anticline, one below the anticline, and two within the anticline we can at least
approximate stationary statistics. If we calculate the covariance within patches where the
statistics are relatively stable, we get Figure 3.

Steering filters

If we examine our desired model, it is apparent that the covariance function varies within at
least two of our four patches (we can also see this in the covariance function of patch 2 and 4
of Figure 3). Therefore, it follows that we should get a better image by making smaller and
smaller patches. Crawley (1998) showed that this is true when solving a data interpolation
problem. Traditional methods for characterizing the model like PEFs and variograms can only
grow so small before we have insufficient statistics to calculate them.
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Figure 3: The covariance at four different regions of our model (left panel of Figure 1.)
The top left is above the upper unconformity; top right, the upper portion of the anticline;
bottom left, lower portion of the anticline; and bottom right, bellow the lower anticline.
bob3-covar-change [ER]

When our stationary assumption is valid, such as in regions one and four of Figure 3 the
covariance matrix is fairly simple. We have a primary trend oriented along the dip of the
velocity field that slowly dies out and a ringing effect due to the sinusoidal nature of our
model. We would like to come up with a way to emulate the primary trend of the covariance
matrix through minimal information.

To do this it is important to remember that our regularization operator should have the
inverse spectrum of the covariance matrix. Therefore if the covariance function is primarily
a dipping event, our regularization operator should be destroying that dip. Claerbout (1990;
1992a) showed how to estimate the primary dip in a region and how to construct a filter that
could destroy that dip. These small filters, which I refer to as steering filters can be as simple
as a two or three point filter, Figure 4. A steering filter consists of a fixed ‘1’ and one or more
coefficients in the next column. The location of the filter coefficients in the second column
determines the dip that the filter will destroy. Figure 5 is the inverse impulse response of
Figure 4. Note how the general orientation of the impulse response is approximately the same
as the covariance function below the lower unconformity. If we assume that velocity

Figure 4: A steering filter which
annihilates dips of 22.5 degrees.
bob3-small-filter [NR] 1 -.5

-.5
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Figure 5: The impulse response
of the inverse of Figure 4.
bob3-small-response [ER]

follows structure and we have some guesses at reflector position, we can use this information
to build our steering filters. For this problem we will assume that we have the location of four
reflectors, one above the top unconformity, two between the unconformities and one below the
lower unconformity (left-panel of Figure 6). If we interpolate these dips to our entire model
space we have all we need to construct a space-varying operator composed of steering filters.
If we use this operator as our regularizer, we get Figure 7 as our interpolation result. The
steering filters did a significantly better job than the isotropic regularizer.

DISCONTINUITIES AND STEERING FILTERS

Now let’s move onto a model with discontinuities. Figure 8 is similar to Figure 1, with the
exception that we now have a listric fault in the middle of the anticline structure. If we follow
the same interpolation path as we did in the last section, the right panel of Figure 8 is our
interpolation result. Instead of reproducing the fault we have created a model that smoothly
changes from horizons on the left of the fault to the corresponding horizons to the right side of
the fault. In many cases a smooth change is not only acceptable, but desirable (for example,
ray-based methods require a smooth model). In other cases the smooth change is unrealistic
and something we want to avoid (salt boundaries and some fault boundaries). Our interpola-
tion fails at the fault because we are not correctly describing the covariance along the edge of
the fault. The problem is that the covariance function at the edge of the fault is not symmetric.
Along the left edge of the fault we have good correlation with points to the left but our corre-
lation with points to the right our correlation is shifted. This asymmetric behavior is difficult
to describe with steering filters.
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Figure 6: Left panel are four reflectors chosen to represent our a priori information. The right
panel is interpolated slope calculated from the reflectors that will form the basis of our steering
filter. bob3-qdome-refs [ER]

Figure 7: The result of using our
steering filter operator as regular-
izer to the missing data problem.
bob3-qdome-reg-cont [ER]
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Figure 8: Left panel is a synthetic velocity model with the beds being offset by a listric fault.
The right panel is the result of interpolating the model using steering filters. bob3-fault-model
[ER]

ESTIMATING A NON-STATIONARY FILTER

Another option is to characterize our model in terms of PEFs rather than steering filters. Nor-
mally we estimate a PEF by solving

Ma 0, (3)

where M is convolution with a field that has the same properties as the model and a is our
PEF. The output of this convolution is white (Claerbout, 1992a). Therefore a must have the
inverse spectrum of the model. When the model varies continuously we must add a slight
twist to our PEF estimation. Instead of breaking up our model space into regions where our
stationary assumption is valid we are going to modify the PEF. Our PEF (a) is now going to
be composed of several different PEFs operating in micro-patches (Figure 9). With so many
filters, and therefore filter coefficients, our filter estimation problem goes from being over-
determined to under-determined. We can force the system to again be overdetermined by
adding a regularization equation to our original filter estimation fitting goals,

0 Ma (4)

0 Fa

where the regularization operator F smoothes the filter coefficients (Clapp et al., 1999).
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Figure 9: Non-stationary PEF con-
struction. The model is broken up
into micro-patches. Each micro-
patch has its own PEF. bob3-patch
[NR]

1

MISSING DATA

To see the power of a non-stationary filter to characterize model covariance let ’s return to
the fault model missing data problem (Figure 8). For our interpolation we will use the known
model as the basis for our PEF, and have a micro-patch size of one sample in x and z. The
resulting interpolation, Figure 10 isn’t quite as high-frequency as our initial model and we
have a minimal amount of continuation of the layers over the fault, but we generally do an
excellent job recovering the model.

Figure 10: The result of finding
non-stationary PEF using the correct
model and then applying it to the
missing data problem. The returned
image is almost exact and does a bet-
ter job with bed discontinuities than
Figure 8. bob3-fault.cont [ER]
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TOMOGRAPHY

Review

The next step is to see how well our non-stationary filter regularizes a tomography problem. I
constructed a synthetic anticline model (Figure 11) with six reflectors,one above the anticline,
four within the anticline, and one flat reflector representing basement rock. For added diffi-
culty, there is a low velocity layer between the second and third reflector. The model was used
to do acoustic wave modeling, with the resulting dataset having 32 meter CMP spacing and
80 offsets spaced 64 meters apart.If we use as our initial estimation of the slowness, an s(z)
function from outside the anticline, the reflectors are pulled up due to using too low a velocity
within the anticline (Figure 12). Following the methodology of Clapp and Biondi (1999) we

Figure 11: Left panel is the synthetic velocity model with six reflectors spanning the anticline.
The right panel shows the data generated from this model. bob3-synth-model [ER]

will begin by considering a regularized tomography problem. We will linearize around an ini-
tial slowness estimate and find a linear operator in the vertical traveltime domain T between
our change in slowness s and our change in traveltimes t. We will write a set of fitting
goals,

t T s

0 A s, (5)

where (A) is our steering filter operator. However, these fitting goals don’t accurately describe
what we really want. Our steering filters are based on our desired slowness rather than change
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Figure 12: Left panel is our initial guess at the velocity function, the right panel shows the
zero offset ray parameter reflector position using this migration velocity. The correct reflector
positions are shown as ‘*’. Note that reflectors are significantly mispositioned. bob3-mig0
[ER]

of slowness. With this fact in mind, we can rewrite our second fitting goal as:

0 A (s0 s) (6)

As0 A s. (7)

Our second fitting goal cannot be strictly defined as regularization but we can do a precondi-
tioning substitution:

t TA 1p

As0 Ip. (8)

Warping

There is one aspect of using non-stationary PEFs that I have glossed over to this point: the re-
quirement that we have field with similar statistics to estimate the PEF from. Viewed one way
this is a significant weakness to the approach, viewed another it can be seen as a useful feature.
One of the largest problems in seismic imaging is how to put the geologist’s conception of ge-
ology into the geophysicst’s inversion problem. The non-stationary PEF can be estimated
from the geologist’s model. Therefore, our regularization operator directly incorporates the
geologist’s conception of the velocity structure into the velocity estimation.

For this simple model, we will use as our conception of geology a vertically warped version
of our initial velocity estimate. We measure how much a migrated reflector positions varies
from our initial flat estimate. Figure 13 shows our initial estimate.
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Figure 13: Warped velocity model
used to estimate non-stationary filters
from. bob3-warp [ER]

Results

If we do three non-linear iterations of tomography using fitting goals (8) each time, we get
Figure 14 as our velocity estimate. The velocity estimate does a good job recovering the
anticline shape. However, it doesn’t do a good job recovering the low velocity layer. Migrating
with Figure 14 we get Figure 15. Overlaid on top of the migrated image are the correct reflector
positions. Overall we did a good job positioning the reflectors. In addition, we can see that we
have little residual moveout in our CRP gathers (Figure 15) but they are relatively flat.

Figure 14: Velocity model af-
ter three non-linear iterations of
non-stationary filter regularization.
bob3-vel3 [CR]
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Figure 15: Migration result using Figure 14 as the velocity model. The left panel is the zero
angle image overlaid by the correct reflector positions. The right three panels shows CRP
gathers at six, eight, and ten kilometers. bob3-res.vel3.from0 [CR]

CONCLUSIONS

Non-stationary PEFs are an effective interpolator, especially when the model has discontinu-
ities, for missing data problems and an effective regularizer for tomography problems. The
weakness of the approach, the requirement that we have field to estimate the PEF from, can
be turned into a strength by allowing a geologist’s conception of the velocity to be directly
encoded into the regularization. A more illuminating test of the non-stationary regularization
of tomography would be on a model with sharp, rather than smooth, boundaries.
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