
Stanford Exploration Project, Report 103, April 27, 2000, pages 107–113

106



Stanford Exploration Project, Report 103, April 27, 2000, pages 107–113

Efficient 3-D wavefield extrapolation with Fourier
finite-differences and helical boundary conditions

James Rickett1

ABSTRACT

Fourier finite-difference (FFD) migration combines the complementary advantages of the
phase-shift and finite-difference migration methods. However, as with other implicit
finite-difference algorithms, direct application to 3-D problems is prohibitively expen-
sive. Rather than making the simple x y splitting approximation that leads to extensive
azimuthal operator anisotropy, I demonstrate an alternative approximation that retains az-
imuthal isotropy without the need for additional correction terms. Helical boundary con-
ditions allow the critical 2-D inverse-filtering step to be recast as 1-D inverse-filtering.
A spectral factorization algorithm can then factor this 1-D filter into a (minimum-phase)
causal component and a (maximum-phase) anti-causal component. This factorization pro-
vides an LU decomposition of the matrix, which can then be inverted directly by back-
substitution. The cost of this approximate inversion remains O(N ) where N is the size of
the matrix.

INTRODUCTION

Within the exploration industry, geophysicists are realizing the inherent limitations of Kirch-
hoff methods when it comes to accurately modeling the effects of finite-frequency wave prop-
agation. This is fueling interest in “wave-equation” migration algorithms, such as those based
on wavefield extrapolation, that do accurately model finite-frequency effects.

As with all migration algorithms, there is a tradeoff amongst extrapolators: cost versus
accuracy. For wavefield extrapolators, however, the tradeoff goes three ways: accuracy at
steep dips versus the ability to accurately handle lateral velocity variations versus cost again.
Fourier finite-difference migration (Ristow and Ruhl, 1994) strikes an effective balance be-
tween the accuracy priorities, combining the steep dip accuracy of phase-shift migration in
media with weak lateral velocity contrasts, and the ability to handle lateral variations with
finite-difference.

Unfortunately, as with other implicit finite-difference, the cost does not scale well for
three-dimensional problems without additional approximations that often expensive and may
compromise accuracy. In an earlier paper, Rickett et al. (1998) solved the costly matrix inver-
sion for implicit extrapolation with the 45 equation with an approximate LU decomposition
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based on the helical transform (Claerbout, 1998b). In this paper, the same approach allows me
to extrapolate with a more accurate operator.

THEORY

Fourier finite-difference migration

Three-dimensional FFD extrapolation is based on the equation (Ristow and Ruhl, 1994),
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where (x , y, z) is the medium velocity, c is a reference velocity (c ), and a and b
are coefficients subject to optimization. The first term describes a simple Gazdag phase-shift
that must be applied in the ( ,k) domain; the second term describes the first-order split-step
correction (Stoffa et al., 1990), applied in ( ,x); and the third term describes an additional
correction that can be applied as an implicit finite-difference operator (Claerbout, 1985), also
applied in ( ,x).

In areas with strong lateral velocity variations (c 0), FFD reduces to a finite-difference
migration, while in areas of weak lateral velocity variations (c 1), FFD retains the steep-
dip accuracy advantages of phase-shift migration. As a full-wave migration method, FFD also
correctly handles finite-frequency effects.

For constant lateral velocity, the finite-difference term in equation (1) can be rewritten as
the following matrix equation,

(I 1D)qz 1 (I 2D)qz (2)

A1qz 1 A2qz (3)

where D is a finite-difference representation of the x , y-plane Laplacian, 2
x ,y , and qz and qz 1

represent the diffraction wavefield at depths z and z 1 respectively . Scaling coefficients, 1

and 2, are complex and depend both on the ratio, , and the ratio c .

The right-hand-side of equation (3) is known. The challenge is to find the vector qz 1

by inverting the matrix, A1. For 2-D problems, only a tridiagonal matrix must be inverted;
whereas, for 3-D problems the matrix becomes blocked tridiagonal. For most applications,
direct inversion of such a matrix is prohibitively expensive, and so approximations are required
for the algorithm to remain cost competitive with other migration methods.

A partial solution is to split the operator to act sequentially along the x and y axes. Un-
fortunately this leads to extensive azimuthal operator anisotropy, and necessitates expensive
additional phase correction operators.
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Helical factorization

The blocked-tridiagonal matrix of the 3-D extrapolation, A1, represents a two-dimensional
convolution operator. Following Rickett et al.’s (1998) approach to factoring the 45 equation,
I apply helical boundary conditions (Claerbout, 1998b) to simplify the structure of the matrix,
reducing the 2-D convolution to an equivalent problem in one dimension.

For example, helical boundary conditions allow a two-dimensional 5-point Laplacian filter
to be expressed as an equivalent one-dimensional filter of length 2Nx 1 as follows

d
1

1 4 1
1

helical boundary conditions
(1, 0, ... 0, 1, 4, 1, 0, ... 0, 1).

The operator, D, in equation (2) could represent convolution with this filter; however, I use a
more accurate, but equivalent, 9-point filter.

Unfortunately, the complex scale-factor, 1, means A1 is symmetric, but not Hermitian, so
the filter, a1, is not an autocorrelation function, and standard spectral factorization algorithms
will fail. Fortunately, however, the Kolmogoroff method can be extended to factor any cross-
spectrum into a pair of minimum phase wavelets and a delay (Claerbout, 1998a).

With this algorithm, the 1-D convolution filter of length 2Nx 1 can be factored into a pair
of (minimum-phase) causal and (maximum-phase) anti-causal filters, each of length Nx 1.
Fortunately, filter coefficients drop away rapidly from either end, and in practice, small-valued
coefficients can be safely discarded.

By reconsituting the matrices representing convolution with these filters, I obtain an ap-
proximate LU decomposition of the original matrix. The lower and upper-triangular factors
can then be inverted efficiently by recursive back-substitution.

While we have only described the factorization for (z) velocity models, the method can
also be extended to handle lateral variations in velocity. For every value of and c , we
precompute the factors of the 1-D helical filters, a1 and a2. Filter coefficients are stored in a
look-up table. We then extrapolate the wavefield by non-stationary convolution, followed by
non-stationary polynomial division. The convolution is with the spatially variable filter pair
corresponding to a2. The polynomial division is with the filter pair corresponding to a1. The
non-stationary polynomial division is exactly analogous to time-varying deconvolution, since
the helical boundary conditions have converted the two-dimensional system to one-dimension.

EXAMPLES

Figure 1 compares depth-slices through impulse responses of FFD migration (with c 0.8)
for the splitting approximation, (a), and the helical factorization, (b). The azimuthal anisotropy
is noticeably reduced with the helical factorization.

Figure 2 shows extracts from a three-dimensional FFD depth migration of a zero-offset
subset from the SEG/EAGE salt dome dataset. This rugose lateral velocity model initially
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Figure 1: Depth-slices of centered impulse response corresponding to a dip of 45 for c
0.8. Panel (a) shows the result of employing an x y splitting approximation, and panel (b)
shows the result of the helical factorization. Note the azimuthally isotropic nature of panel (b).
james1-timeslices [CR]

caused mild stability problems for the FFD migration, and I had to smooth the velocity model
to produce the results shown in Figure 2. Biondi (2000) presents an unconditionally stable
formulation of the FFD algorithm; however, that formulation does not easily fit with the ap-
proximate helical factorization discussed here.

CONCLUSIONS

Helical boundary conditions allow the critical 2-D inverse-filtering step in FFD migration to be
recast as 1-D inverse-filtering. A spectral factorization algorithm can then factor this 1-D filter
into a (minimum-phase) causal component and a (maximum-phase) anti-causal component.
This factorization provides an LU decomposition of the matrix, which can then be inverted
directly by back-substitution. The cost of this approximate inversion remains O(N ) where N
is the size of the matrix.

I demonstrate this alternative factorization retains azimuthal isotropy without the need for
additional correction terms, and apply the migration algorithm to the 3-D SEG/EAGE salt
dome synthetic dataset.
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Figure 2: Migration of a three-dimensional zero-offset subset from the SEG/EAGE salt dome
dataset by Fourier finite-differences with helical boundary conditions. james1-cubeplot
[CR]
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