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Data alignment with non-stationary shaping filters

James Rickett?

ABSTRACT

Cross-correlation provides a method of calculating a static shift between two datasets.
By cross-correlating patches of data, | can calculate a “warp function” that dynamically
aligns the two datasets. By exploiting the link between cross-correlation and shaping fil-
ters, | calculate warp functions in a more general way, leveraging the full machinery of
geophysical estimation. | compare warp functions, derived by the two methods, for smple
one and two-dimensional applications. For the one-dimensional well-tie example, shap-
ing filters gave significantly improved results, however, for the two dimensional residual
migration example, the cross-correlation technique gave the better results. | also explain
how the helical transform allows the problem of finding a shaping filter to be formulated
as an auto-regression.

INTRODUCTION

In both the fields of medical and seismic imaging, automated interpretation of volumetric
data is becoming very important. A classical medical imaging problem is how to deform a
template image to match an observed image (Kjems et a., 1996). This deformation process
is also known as warping (Wolberg, 1990), and is the subject of a large literature within the
medical imaging community that is reviewed by Toga and Thompson (1998).

Applications of warping, however, are not limited to medical imaging: automated coreg-
istration algorithms may be useful whenever multiple datasets need to be compared directly
with one another. In the field of seismic exploration, Grubb and Tura (1997) used a warping
algorithm when estimating AVO uncertainties: they migrated a field with multiple equiprob-
able velocity fields, and colocated the images with cross-correlation derived warp functions.
In another seismic application, Rickett and Lumley (1998) included warping as part of atime-
lapse reservoir monitoring cross-equalization flow, specifically to address the effects of migra-
tions with different velocity fields. They also found alink between statistically derived warp
functions and deterministic residual migration (Rothman et al., 1985) or velocity continuation
(Fomel, 1997a) operators.
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Warping: atwo step process

Warping is nothing more than resampling of an image in a stretched coordinate system. | split
the warping operation into two stages: firstly, the determination of the new coordinate system,
and secondly, the spatial and/or temporal resampling.

The second step, the resampling, is just an interpolation operation. It is no more complex
than applying normal moveout (NMO), for example. However, as with other resampling oper-
ators, the choice of interpolation (nearest-neighbour, linear, band-limited etc.) may affect the
quality of results.

The more challenging problem is how do we determine the new coordinate system? Or
equivalently, how do we determine the warp function itself?

Calculation of the warp function

The previous authors (Grubb and Tura, 1997; Rickett and Lumley, 1998) determined the warp
function by calculating local cross-correlation functions at certain node points within the im-
age space. The warp function at those node points is then taken to be the lag associated with
the maxima of the cross-correlelograms. Node values may then be smoothed and interpol ated
to fill the image volume.

Unfortunately because seismic data is band-limited, cross-correlelograms have multiple
local maxima, and in noisy data situations, the maxima may have similar amplitude. Sim-
ply picking maxima is, therefore, prone to cycle-skipping problems. The problem of cycle-
skipping is fundamental to the process of automated (and even manual) seismic interpretation.
Rickett and Lumley (1998) addressed it by heavy smoothing and median filtering of the warp
functions before the image resampling itself.

In this paper, | exploit the link between shaping filters and cross-correlation functions
to incorporate the smoothing within the matching process. | pick shaping filter maxima as
opposed to cross-correlelogram maxima, reducing the need for ad hoc smoothing after the
fact.

THEORY

Cross-correlation and shaping filters

A simple numerical way to find a static shift between two traces is to find the maximum of
their cross-correlation function. The relative shift is the corresponding cross-correlation lag.
Shaping filters are closely related to the smple cross-correlation function, and can also be
used to measure relative shifts.

The shaping filter designed to match afirst dataset, d;, with a second dataset, d», can be
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defined as the filter, a that minimizes the norm of the objective function,
O(@@) =|laxdyi—dz ][, «y

where * denotes convolution. Equation (1) is very general: it implies nothing about either the
choice of norm, or the dimensionality of d1, d or thefilter a.

The classical discrete solution (Robinson and Treitel, 1980) to equation (1), which mini-
mizes O(a) in the L, sense, can be written as

a=(DID;) ' DId,. ®)

In this paper, | will use the convention that a bold upper case letter represents the operator
that describes convolution with the filter represented by the corresponding lower case letter.
For example, D1 represents the matrix which describes convolution with the dataset, d;, and
D> describes the matrix which represents convolution with d,. Multi-dimensionality in equa-
tion (2) is built into the definition of the convolution matrices.

Equation (2) implies that the optimal shaping filter, a, is given by the cross-correlation
of di with d, filtered by the inverse of the auto-correlation of di. Equation (2) provides an
alternative method of computing a cross-correlation function: firstly calculate an L, shaping
filter to link one dataset with the other; secondly, recolor the filter with the auto-correlation of
the first dataset.

It is not immediately clear why we would ever want to do this in practice, since the first
step of computing a shaping filter is to compute a cross-correlation. However, shaping filter
estimation can leverage the well-developed machinery of geophysical inversion (Claerbout,
1999) in a number of ways; for example, we may include non-stationarity, a different choice
of norm, or different types of regularization in an alternative definition of a shaping filter.

The new algorithm for finding a warp function has three steps. First, estimate a non-
stationary shaping filter. Second, recolor the shaping filter by convolving it with the autocor-
relation of d;. Finally pick the maxima of the recolored shaping filters.

Adaptive shaping filters

Thefirst step isto consider non-stationary shaping filters. Experience with missing data prob-
lems (Crawley et al., 1998; Crawley, 1999b) has shown that working with smoothly-varying
non-stationary filters often gives better results than working with filters that are stationary
within small patches.

With a non-stationary convolution filter, f, the shaping filter regression equations,
A 1f —ap =0, (3)

are massively underdetermined since there is a potentially unique impulse response associ-
ated with every point in the dataspace (Rickett, 1999). We need constraints to ensure the
filters vary-smoothly in some manner. The simplest regularization scheme involves applying
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a generic data-space roughening operator, R, to the non-stationary filter coefficients. R can be
asimple derivative operator, for example. This leads to the set of equations,

A1f—a2 =0 (4)
eRf = 0. (5)

By making the change of variables, g = Rf (Fomel, 1997b), we get the following system of
equations,

AR lg—a; = 0 (6)
eq = 0. (7

Equations (6) and (7) describe a preconditioned linear system of equations, the solution to
which converges rapidly under an iterative conjugate-gradients solver. In practice, | set e =0,
and keep the filters smooth by restricting the number of iterations (Crawley, 1999a).

Shaping filers on a helix

In ahelical coordinate system (Claerbout, 1997), calculation of shaping filters can be formu-
lated as an autoregression. If we concatenate the two datasets being matched, and ensure that
filter lags span the two datasets, then the shaping filter is identical to the prediction-filter that
is used to predict the second dataset from the first. This convenient observation allows reuse
of both codes and concepts.

APPLICATIONS

| demonstrate the difference in results obtained by cross-correl ations and non-stationary shap-
ing filters on two simple examples: firstly, a 1-D well-tie problem, and secondly a 2-D statisti-
cal residual migration. Both methods extend naturally to higher dimensions as well; however,
while the cost of the cross-correlation method is proportional to the number of filter coeffi-
cients, Ny, the cost of the shaping filter method is proportional to N?, since the number of
iterations depends on the number of filter coefficients.

One-dimensional well-ties

Figure 1 shows a seismic section from which | drew two hypothetical sonic logs. The task was
then to match them to each other. The fault that cuts through the section and the poor data
quality in the lower part cause problems from matching agorithms.

Figures 2 and 3 compare the results of the two warping agorithms. The shaping filters
themselves change more smoothly as a function of time than the local cross-correlelograms.
The warped difference (trace 3 in both figures) also contains less energy in Figure 3 than
Figure 2 indicating the shaping filters have found a better match. Clip levels for the wiggle
displays are the same for both Figures 2 and 3.



SEP-103 Shaping filters 209

G0

Figure 1: Seismic section from which -
two hypothetical sonic logs were
drawn. d; was drawn at X=31 km
and d, was drawn at X=32 km.
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Two-dimensional residual migration

The two panels in Figure 4 show the same 2-D section from a 3-D depth migration of the
Elf L7D dataset (Vaillant, 1999), after residua migration with two different residua velocity
ratios (Sava, 2000) and conversion to traveltime depth. | converted to traveltime depth to avoid
remove systematic gross kinematic changes in depth, while leaving changes in kinematics due
to imaging differences.

Figure 5 compares the raw difference between the two panels in Figure 4 with the dif-
ference after warping with the cross-correlation agorithm, and the shaping filter algorithm.
Comparing panel (a) and panel (b) shows the energy in the cross-correlation difference sec-
tion has decreased significantly, and the algorithm has aligned the main eventswell. The RMS
amplitude decreased a factor of 0.6. On the other hand, comparing panels (a) and (c) shows
the shaping filters have not nearly been as successful: although the flanks of the salt have been
well aligned, other parts of the section are less well aligned than before warping. The RMS
amplitude in panel (c) has only been reduced by a factor of 0.8.

Although | tried a range of parameters, the shaping filter results could probably be im-
proved by tweaking them further. There are many possible options with regard choice of
roughening filter and number of iterations, and it is difficult to find the best set.
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Figure 2: Cross-correlation results. The top panel shows cross-correlelograms and picked
maxima. The bottom panel shows d; (0), d» (1), warped d; (2), d2 —warped d; (3), and
dy—d; (4). |james2-xcorrl|[ER]
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Figure 3: Non-stationary shaping filter results. The top panel shows cross-correlelograms and
picked maxima. The bottom panel shows d1 (0), d» (1), warped d; (2), d» — warped d; (3),
and dz —dj (4). |james2-xcorr2| [ER]

X (m) X (m)
2000 3000 4000 5000 6000 7000 o 2000 3000 4000 5000 6000 7000

Figure 4. Seismic sections extracted from the EIf L7D dataset after residual migra
tion with vigio = 0.96 and vrgio = 1.02 and conversion from depth to traveltime depth.
james2-elfpanels| [ER]
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Figure 5. (a) Raw difference be- o |
tween the two panels in Figure 4.  *
(b) The difference after warping o
with the cross-correlation agorithm. 2 o
(c) The difference after warping =
with the shaping filter algorithm. .
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FURTHER WORK

Derivation of awarp function is fundamentally a non-linear process, and | am never going to
be able to escape that fact. However, there are tractable and non-tractable non-linear problems
that we have some experience with. By formulating the problem of finding awarp function in
the framework of geophysical estimation theory, | have opened up many possible avenues of
exploration.

A big problem is the presence of secondary maxima that confuse the picking operation;
ideally we would like to pick from functions with unique maxima. We may be able to achieve
this goal by imposing a minimum-entropy condition (Thorson, 1984) on the shaping filter reg-
ularization (model-spaceresidual). In practice, however, thismay have convergence problems,
and we may be better off with an L, norm on the model-space residual (Nichols, 1994), or
even the Huber norm (Guitton, 2000).

CONCLUSIONS

Shaping filters are closely related to cross-correlelograms, and therefore can be used to calcu-
late kinematic misalignments between two similar datasets. | demonstrate the use of shaping
filtersto calculate adynamic “warp” function that maps one dataset to another. Shaping filters
can leverage the power of geophysical estimation theory, which potentially may help avoid
problems associated with noisy datato provide improved estimates of multi-dimensional warp
functions.

I compared results of warping with afunction derived from shaping filterswith resultsfrom
awarp function derived from cross-correlelograms. For the one-dimensional well-tie example,
the shaping filters gave encouraging results;, however, for the two-dimensional example the
cross-correl ation technique gave better results.
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