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Short Note

Traveltime sensitivity kernels: Banana-doughnuts
or just plain bananas?

James Rickett1

INTRODUCTION

Estimating an accurate velocity function is one of the most critical steps in building an ac-
curate seismic depth image of the subsurface. In areas with significant structural complexity,
one-dimensional updating schemes become unstable, and more robust algorithms are needed.
Reflection tomography both in the premigrated (Bishop et al., 1985) and postmigrated domains
(Stork, 1992; Kosloff et al., 1996) bring the powerful technologies of geophysical inversion
theory to bear on the problem.

Unfortunately, however, inversion methods can be limited by the accuracy of their forward
modeling operators, and most practical implementations of traveltime tomography are based
on ray-theory, which assumes a high frequency wave, propagating through a smoothly varying
velocity field, perhaps interrupted with a few discrete interfaces. Real world wave-propagation
is much more complicated than this, and the failure of ray-based methods to adequately model
wave propagation through complex media is fueling interest in “wave-equation” migration al-
gorithms that both accurately model finite-frequency effects, and are practical for large 3-D
datasets. As a direct consequence, finite-frequency velocity analysis and tomography algo-
rithms are also becoming an important area of research (Woodward, 1992; Biondi and Sava,
1999).

Recent work in the global seismology community (Marquering et al., 1998, 1999) is draw-
ing attention to a non-intuitive observation first made by Woodward (1992), that in the weak-
scattering limit, finite-frequency traveltimes have zero-sensitivity to velocity perturbations
along the geometric ray-path. This short-note aims to explore and explain this non-intuitive
observation.
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THEORY

A generic discrete linear inverse problem may be written as

d A m (1)

where d (d1 d2 ...)T is the known data vector, m (m1 m2 ...)T is the unknown model
vector, and A represents the linear relationship between them. A natural question to ask is:
which parts of the model influence a given observed data-point? The answer is that the row
of matrix, A, corresponding to the data-point of interest will be non-zero where that point in
model space influences the data-value. Rows of A may therefore be thought of as sensitivity
kernels, describing which points in model space are sensed by a given data-point.

For a generic linearized traveltime tomography problem, traveltime perturbations, T, are
related to slowness perturbations, S, through a linear system,

T A S. (2)

The form of the sensitivity kernels depend on the the modeling operator, A.

Under the ray-approximation, traveltime for a given ray, T , is calculated by integrating
slowness along the ray-path,

T
ray

s(x) dl . (3)

Assuming that the ray-path is insensitive to a small slowness perturbation, the perturbation in
traveltime is given by the path integral of the slowness perturbation along the ray,

T
ray

s(x) dl . (4)

Since traveltime perturbations given by equation (4) are insensitive to slowness perturba-
tions anywhere off the geometric ray-path, the sensitivity kernel is identically zero everywhere
in space, except along the ray-path where it is constant. The implication for ray-based trav-
eltime tomography is that traveltime perturbations should be back-projected purely along the
ray-path.

We are interested in more accurate tomographic systems of the form of equation (3),
that model the effects of finite-frequency wave-propagation more accurately than simple ray-
theory. Once we have such an operator, the first question to ask is: what do the rows look
like?

Born traveltime sensitivity

One approach to building a linear finite-frequency traveltime operator is to apply the first-
order Born approximation, to obtain a linear relationship between slowness perturbation, S,
and wavefield perturbation, U ,

U B S. (5)
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The Born operator, B, is a discrete implementation of equation (A-7), which is described in
the Appendix.

Traveltime perturbations may then be calculated from the wavefield perturbation through
a (linear) picking operator, C, such that

T C U CB S (6)

where C is a (linearized) picking operator, and a function of the background wavefield, U0.

Cross-correlating the total wavefield, U (t), with U0(t), provides a way of measuring their
relative time-shift, T . Marquering et al. (1999) uses this to provide the following explicit
linear relationship between T and U (t),

T

t2
t1

U̇ (t) U (t) dt
t2

t1
Ü (t) U (t) dt

, (7)

where dots denote differentiation with respect to t , and t1 and t2 define a temporal window
around the event of interest. Equation (7) is only valid for small time-shifts, T s0.

Rytov traveltime sensitivity

The first Rytov approximation (or the phase-field linearization method, as it is also known)
provides a linear relationship between the slowness and complex phase perturbations.

R S, (8)

where exp(U), and the Rytov operator, R, is a discrete implementation of equation (A-10),
which is also described in Appendix A.

Traveltime is related to the complex phase by the equation, ( ) t . For a band-
limited arrival with amplitude spectrum, F( ), traveltime perturbation can be calculated sim-
ply by summing over frequency (Woodward, 1992),

T
F( )

( )
F( )

(R S) . (9)

Of the two approximations, several authors (Beydoun and Tarantola, 1988; Woodward,
1989) note that the Born approximation is the better choice for modeling reflected waves, while
the Rytov approximation is better for transmitted waves. Differences tend to zero, however, as
the scattering becomes small.

KERNELS COMPARED

This section contains images of traveltime kernels computed numerically for a simple model
that may be encountered in a reflection tomography problem. The source is situated at the
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surface, and the receiver (known reflection point) is located at a depth of 1.8 km in the sub-
surface. The background velocity model, 0(z) 1 s0(z), is a linear function of depth with

0(0) 1.5 kms 1, and d 0
dz 0.8 s 1. I chose a linear velocity function since Green’s func-

tions can be computed on-the-fly with rapid two-point ray-tracing.

Figure 1 shows the ray-theoretical traveltime sensitivity kernel: zero except along the
geometric ray-path.

Figure 1: Traveltime sensitivity kernel for ray-based tomography in a linear (z) model. The
kernel is zero everywhere except along geometric ray-path. Right panel shows a cross-section
at X 1 km. james3-RayKernel [ER]

Figures 2 and 3 show first Rytov traveltime sensitivity kernels for 30 Hz and 120 Hz
wavelets respectively. The important features of these kernels are identical to the features of
kernels that Marquering et al. (1999) obtained for teleseismic S H wave scattering, and to
Woodward’s (1992) band-limited wave-paths. They have the appearance of a hollow banana:
that is appearing as a banana if visualized in the plane of propagation, but as a doughnut
on a cross-section perpendicular to the ray. Somewhat counter-intuitively, this suggests that
traveltimes have zero sensitivity to small velocity perturbations along the geometric raypath.
Fortunately, however, as the frequency of the seismic wavelet increases, the bananas become
thinner, and approach the ray-theoretical kernels in the high-frequency limit. Parenthetically,
it is also worth noticing that the width of the bananas increases with depth as the velocity (and
seismic wavelength) increases.

I do not show the first-Born kernels here, since, in appearance, they are identical to the
Rytov kernels shown in Figures 2 and 3.
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Figure 2: Rytov traveltime sensitivity kernel for 30 Hz wavelet in a linear (z) model. The
kernel is zero along geometric ray-path. Right panel shows a cross-section at X 1 km.
james3-BananaPancake8 [ER]

Figure 3: Rytov traveltime sensitivity kernel for 120 Hz wavelet in a linear (z) model. The
kernel is zero along geometric ray-path. Right panel shows a cross-section at X 1 km.
james3-BananaPancake2 [ER]
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THE BANANA-DOUGHNUT PARADOX

The important paradox is not the apparent contradiction between ray-theoretical and finite-
frequency sensitivity kernels, since they are compatible in the high-frequency limit. Instead,
the paradox is how do you reconcile the zero-sensitivity along the ray-path with your intuitive
understanding of wave propagation?

A first potential resolution to the paradox is that the wavefront healing removes any effects
of a slowness perturbation. This alone is a somewhat unsatisfactory explanation since it does
not explain why traveltimes are sensitive to slowness perturbations just off the geometric ray-
path.

A second potential resolution is that the hollowness of the banana is simply an artifact
of modeling procedure. This is partially true. Both Born and Rytov are single scattering
approximations, and a single scatterer located on the geometric ray-path may only contribute
energy in-phase with the direct arrival. In contrast, if there are two scatterers on the geometric
ray-path traveltimes may be affected. However, just because the paradox may appear to be an
artifact of the modeling procedure does not mean it is not a real phenomenom. In the weak
scattering limit, traveltimes will indeed be insensitive to a slowness perturbation situated on
the geometric ray-path.

CONCLUSIONS: DOES IT MATTER?

Practitioners of traveltime tomography typically understand the shortcomings of ray-theory;
although they realize using “fat-rays” would be better, they smooth the slowness model both
explicitly and by regularizing during the inversion procedure. In practice, any shortcomings
of traveltime tomography are unlikely to be caused by whether or not the fat-rays are hollow.

However, the null space of seismic tomography problems is typically huge. Smoothing
and regularization are often done with very ad hoc procedures. Understanding the effects of
finite-frequency through sensitivity kernels may lead to incorporating more physics during the
regularization and improve tomography results.
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APPENDIX A

BORN/RYTOV REVIEW

Modeling with the first-order Born (and Rytov) approximations [e.g. Beydoun and Tarantola
(1988)] can be justified by the assumption that slowness heterogeneity in the earth exists on
two separate scales: a smoothly-varying background, s0, within which the ray-approximation
is valid, and weak higher-frequency perturbations, s, that act to scatter the wavefield. The
total slowness is given by the sum,

s(x) s0(x) s(x). (A-1)

Similarly, the total wavefield, U , can be considered as the sum of a background wavefield,
U0, and a scattered field, U , so that

U (x, ) U0(x, ) U (x, ), (A-2)

where U0 satisfies the Helmholtz equation in the background medium,

2 2 s2
0 (x) U0(x, ) 0, (A-3)
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and the scattered wavefield is given by the (exact) non-linear integral equation (Morse and
Feshbach, 1953),

U (x, )
2

4 V
G0(x, ;x )U (x, ;x ) s(x ) dV (x ). (A-4)

In equation (A-4), G0 is the Green’s function for the Helmholtz equation in the background
medium: i.e. it is a solution of the equation

2 2 s2
0 (x) G0(x, ;xs) 4 (x xs ). (A-5)

Since the background medium is smooth, in this paper I use Green’s functions of the form,

G0(x, ;xs) A0(x,xs)ei T0(x,xs ). (A-6)

where A0 and T0 are ray-traced traveltimes and amplitudes respectively.

A Taylor series expansion of U about U0 for small s, results in the infinite Born series,
which is a Neumann series solution (Arfken, 1985) to equation (A-4). The first term in the
expansion is given below: it corresponds to the component of wavefield that interacts with
scatters only once.

UBorn(x, )
2

4 V
G0(x, ;x )U0(x, ;x ) s(x )dV (x ). (A-7)

The approximation implied by equation (A-7) is known as the first-order Born approximation.
It provides a linear relationship between U and s, and it can be computed more easily than
the full solution to equation (A-4).

The Rytov formalism starts by assuming the heterogeneity perturbs the phase of the scat-
tered wavefield. The total field, U exp( ), is therefore given by

U (x, ) U0(x, ) exp( ) exp( 0 ). (A-8)

The linearization based on small leads to the infinite Rytov series, on which the first
term is given by

Rytov(x, )
UBorn(x, )

U0(x, )
(A-9)

2

4 U0(x, ) V
G0(x, ;x )U0(x, ;x ) s(x )dV (x ). (A-10)

The approximation implied by equation (A-10) is known as the first-order Rytov approxi-
mation. It provides a linear relationship between and s.
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