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Transformation of seismic velocity data to extract porosity and
saturation values for rocks

James G. Berryman,1 Patricia A. Berge,2 and Brian P. Bonner3

ABSTRACT

For wave propagation at low frequencies in a porous medium, the Gassmann-Domenico
relations are well-established for homogeneous partial saturation by a liquid. They pro-
vide the correct relations for seismic velocities in terms of constituent bulk and shear
moduli, solid and fluid densities, porosity and saturation. It has not been possible, how-
ever, to invert these relations easily to determine porosity and saturation when the seismic
velocities are known. Also, the state (or distribution) of saturation, i.e., whether or not
liquid and gas are homogeneously mixed in the pore space, is another important variable
for reservoir evaluation. A reliable ability to determine the state of saturation from ve-
locity data continues to be problematic. We show how transforming compressional and
shear wave velocity data to the ( , )-plane (where and are the parame-
ters and is the total density) results in a set of quasi-orthogonal coordinates for porosity
and liquid saturation that greatly aids in the interpretation of seismic data for the physical
parameters of most interest. A second transformation of the same data then permits iso-
lation of the liquid saturation value, and also provides some direct information about the
state of saturation. By thus replotting the data in the ( , )-plane, inferences can be
made concerning the degree of patchy (inhomogeneous) versus homogeneous saturation
that is present in the region of the medium sampled by the data. Our examples include
igneous and sedimentary rocks, as well as man-made porous materials. These results
have potential applications in various areas of interest, including petroleum exploration
and reservoir characterization, geothermal resource evaluation, environmental restoration
monitoring, and geotechnical site characterization.

INTRODUCTION

In a variety of applied problems, it is important to determine the state of saturation of a porous
medium from acoustic or seismic measurements. In the oil and gas industry, it is common
to use amplitude-versus-offset (AVO) processing of seismic reflection data to reach conclu-
sions about the presence of gas, oil, and their relative abundances on the opposite sides of a

1email: berryman@sep.stanford.edu
2Lawrence Livermore National Lab, P. O. Box 808, L-201, Livermore, CA 94550
email: berge1@llnl.gov

3Lawrence Livermore National Lab, P. O. Box 808, L-201, Livermore, CA 94550
email: bonner1@llnl.gov

205



206 Berryman et al. SEP–103

reflecting interface underground [e.g., Castagna and Backus (1993)]. For environmental ap-
plications, we can expect to be working in the near surface where sensor geometries other
than surface reflection surveys become practical. For example, when boreholes are present,
it is possible to do crosswell seismic tomography, or borehole sonic logging to determine ve-
locities [e.g., Harris et al. (1995)]. For AVO processing the data obtained are the seismic
impedances p and s (where is the density, and p, s are the seismic compressional and
shear wave velocities, respectively), which arise naturally in reflectance measurements. (In
this paper, we will use the term “velocities” to refer to measured velocities at seismic, sonic,
or ultrasonic frequencies, unless otherwise specified.) However, for crosswell applications,
we are more likely to have simply velocity data, i.e., p and s themselves without density
information. For well-logging applications, separate measurements of the velocities as well as
density are possible. Although a great deal of effort has been expended on AVO analysis, rela-
tively little has been done to invert the simple velocity data for porosity and saturation. It is our
purpose to present one method that shows promise for using velocity data to obtain porosity
and saturation estimates. The key physical idea used here is the fact that the parameter
and the density are the two parameters containing information about saturation, while both
of these together with shear modulus contain information about porosity ( and are de-
fined in the next section). These facts are well-known from earlier work of Gassmann (1951),
Domenico (1974), and many others. (It is well-established that even though the Gassmann-
Domenico relations are derived for the static case, they have been found to describe behavior
measured in the field at sonic and seismic frequencies, and, in some cases, even in laboratory
ultrasonic experiments.) The same facts are used explicitly in AVO analysis (Castagna and
Backus, 1993; Ostrander, 1984; Castagna et al., 1985; Foster et al., 1997), but in ways that
are significantly different from those to be described here. A major point of departure is that
the present work allows direct information to be obtained about, not only the level of the sat-
uration, but also concerning the state of saturation, i.e., whether the liquid and gas present are
mixed homogeneously, or are instead physically separated and therefore in a state of patchy
saturation (Berryman et al., 1988; Endres and Knight, 1989; Knight and Nolen-Hoeksema,
1990; Mavko and Nolen-Hoeksema, 1994; Dvorkin and Nur, 1998; Cadoret et al., 1998).
Another advantage is that this method uses velocity rather than amplitude information, and
therefore may have less uncertainty and may also require less data processing for some types
of field experiments.

One of the main points of the analysis to be presented is the purposeful avoidance of the
well-known complications that arise at high frequencies, due in large part to velocity disper-
sion and attenuation (Biot, 1956a,b; Biot, 1962; O’Connell and Budiansky, 1977; Mavko and
Nur, 1978; Berryman, 1981; McCann and McCann, 1985; Johnson et al., 1987; Norris, 1993;
Best and McCann, 1995). Our point of view is that seismic data (as well as most sonic, and
some ultrasonic data) do not suffer from contamination by the frequency-dependent effects to
the same degree typically seen for high frequency laboratory measurements. By restricting our
range of frequencies to those most useful in the field, we anticipate a significant simplification
of the analysis and therefore an improvement in our ability to provide both simple and robust
interpretations of field data. In the Discussion section, we also provide a means of identifying
data in need of correction for dispersion effects.

We introduce the basic physical ideas in the next section. Then we present two new meth-
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ods of displaying the velocity data. One method is used to sort data points into sets that have
similar physical attributes, such as porosity. Then, the second method is used to identify both
the level of saturation and the type of saturation, whether homogeneous, patchy, or a combina-
tion of the two. We show a subset of the large set of data we have examined that confirms these
conclusions empirically. We then provide some discussion of the results and what we foresee
as possible future applications of the ideas. Finally, we summarize the accomplishments of
the paper in the concluding section.

ELASTIC AND POROELASTIC WAVE PROPAGATION

For isotropic elastic materials there are two bulk elastic wave speeds (Aki and Richards, 1980),
compressional p ( 2 ) and shear s . Here is the overall density, and the

parameters and are the constants that appear in Hooke’s law relating stress to strain
in an isotropic material. The constant gives the dependence of shear stress on shear strain
in the same direction. The constant gives the dependence of compressional or tensional
stress on extensional or dilatational strains in orthogonal directions. For a porous system with
porosity (void volume fraction) in the range 0 1, the overall density of the rock or
sediment is just the volume weighted density given by

(1 ) s [S l (1 S) g], (1)

where s , l , g are the densities of the constituent solid, liquid and gas, respectively. S is
the liquid saturation, i.e., the fraction of liquid-filled void space in the range 0 S 1 [see
Domenico (1974)]. When liquid and gas are distributed uniformly in all pores and cracks,
Gassmann’s equations say that, for quasistatic isotropic elasticity and low frequency wave
propagation, the shear modulus will be mechanically independent of the properties of any
fluids present in the pores, while the overall bulk modulus K ( 2

3 ) of the rock or sed-
iment including the fluid depends in a known way on porosity and elastic properties of the
fluid and dry rock or sediment (Gassmann, 1951; Berryman, 1999). Thus, in the Gassmann
model, the parameter is elastically dependent on fluid properties, while is not. The
density also depends on saturation, as shown in equation (1). At low liquid saturations,
the bulk modulus of the fluid mixture is dominated by the gas, and therefore the effect of the
liquid on is negligible until the porous medium approaches full saturation. This means that
both velocities p and s will decrease with increasing fluid saturation (Domenico, 1974) due
to the “density effect,” wherein the only quantity changing is the density, which increases in
the denominators of both 2

p and 2
s . As the medium approaches full saturation, the shear ve-

locity continues its downward trend, while the compressional velocity suddenly (over a very
narrow range of saturation values) shoots up to its full saturation value. A well-known ex-
ample of this behavior was provided by Murphy (1984). Figure 1 shows how plots of these
data for sandstones will appear in several choices of display, with Figure 1(a) being one of
the more common choices. This is the expected (ideal Gassmann-Domenico) behavior of par-
tially saturated porous media. The Gassmann-Domenico relations hold for frequencies low
enough (sonic and below) that the solid frame and fluid will move in phase, in response to
applied stress or displacement. The fluid pressure must be (at least approximately) uniform
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throughout the porous medium, from which assumption follows the homogeneous saturation
requirement.

PREDICTIONS OF THE THEORY AND EXAMPLES

Gassmann-Domenico relations

Gassmann’s equations (Gassmann, 1951) for fluid substitution state that

K Kdr

2

( ) Km K f
and dr , (2)

where Km is the bulk modulus of the single solid mineral, Kdr and dr are the bulk and
shear moduli of the drained porous frame. The special combination of moduli defined by

1 Kdr Km is the Biot-Willis parameter (Biot and Willis, 1957). The porosity is ,
while K and are the effective bulk and shear moduli of the undrained porous medium that is
saturated with a fluid mixture having bulk modulus K f . For partial saturation conditions with
homogeneous mixing of liquid and gas, so that all pores contain the same relative proportions
of liquid and gas, Domenico (1974) among others shows that

1 K f S Kl (1 S) Kg. (3)

The saturation level of liquid is S lying in the range 0 S 1. The bulk moduli are: Kl for
the liquid, and Kg for the gas. When S is small, (3) shows that K f Kg, since Kg Kl . As
S 1, K f remains close to Kg until S closely approaches unity. Then, K f changes rapidly
(over a small range of saturations) from Kg to Kl . (Note that the value of Kl may be several
orders of magnitude larger than Kg, as in the case of water and air — 2.25 GPa and 1.45 10 4

GPa, respectively.)

Since has no mechanical dependence on the fluid saturation, it is clear that all the fluid
dependence of K 2

3 in (2) resides within the parameter . Other recent work
(Berryman et al., 1999) on layered elastic media indicates that should be considered as an
important independent variable for analysis of wave velocities and Gassmann’s results provide
some confirmation of this deduction (and furthermore provided a great deal of the motivation
for the present line of research). The parameters K ( 2

3 ) and Kdr ( dr
2
3 dr ) can

be replaced in (2) by and dr without changing the validity of the equation. Thus, like K ,
for increasing saturation values, will be almost constant until the porous medium closely
approaches full saturation.

Now, the first problem that arises with field data is that we usually do not know the reason
why data collected at two different locations in the earth differ. It could be that the differences
are all due to the saturation differences we are concentrating on in this paper. Or it could
be that they are due entirely or only partly to differences in the porous solids that contain
the fluids. In fact, solid differences easily can mask any fluid differences because the range
of detectable solid mechanical behavior is so much greater than that of the fluids (especially
when fractures are present).
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It is essential to remove such differences due to solid heterogeneity. A related issue con-
cerns differences arising due to porosity changes throughout a system of otherwise homoge-
neous solids. One way of doing this would be to sort our data into sets having similar porous
solid matrix. For simplicity and because of the types of laboratory data sets available, we will
use porosity here as our material discriminant.

TABLE 1. Monotonicity properties of the parameters and and the density as the
porosity and liquid saturation S vary.

Density

S ? S 0 S 0

S S 0 (or 0) S 0 S 0

Considering our three main parameters, , , and , we see that all three depend on
porosity, but only and depend on saturation. Using formulas (1)-(3), we can take partial
derivatives of each of these expressions first with respect to while holding S constant, and
then with respect to S while holding constant. For now, we are only interested in trends
rather than the exact values, and these are displayed in Table 1. The trend for S 0
requires the additional reminder that, although this term is always positive, its value is often
so small that it may be treated as zero except in the small range of values close to S 1. Also,
using Hashin-Shtrikman bounds (Hashin and Shtrikman, 1962) as a guide, it turns out that it is
not possible to make a general statement about the sign of S, since the result depends
on the particular material constants. (Related differences of sign are also observed in the data
we show later in this paper; thus, this ambiguity is definitely real and observable.)

Assuming that the primary variables are , , and (further justification of this choice of
primary variables is provided later in the paper), then the two pieces of velocity data we have
can be used to construct the following three ratios:

2
s

2
p 2 2

s
, (4)

1
2
p 2 2

s
, (5)

and

1
2
s

. (6)
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We will consider first of all what happens to these ratios for homogeneous mixing of fluids,
and then consider the simpler case of ideal patchy saturation, where some pores in the partially
saturated medium are completely filled with liquid and others are completely dry (or filled with
gas).

Homogeneous saturation

For homogeneous saturation, as S varies while porosity remains fixed, the ratio does not
change significantly until S 1. At that point, increases dramatically and therefore
decreases dramatically. Similarly, as S 1, the only changes in over most of the dynamic
range of S are in , which increases linearly with S. Then, when is almost at its maximum
value, increases dramatically, causing the ratio to decrease dramatically. Thus, does
not change monotonically with S, but first increases a little and then decreases a lot. These
two ratios may be conveniently compared by plotting data from various rocks and man-made
porous media examples in the ( , )-plane [see Figure 1(b) and Figure 2]. We see that,
when data are collected at approximately equal intervals in S, the low saturation points will
all cluster together with nearly constant and small increases in , but the final steps
as S 1 lead to major decreases in both ratios. The resulting plots appear as nearly straight
lines in this plane, with drained samples plotting to the upper right and fully saturated samples
plotting to the lower left in each of the examples shown in Figure 2. The remaining ratio
has the simplest behavior, since increases monotonically in S, and does not change. So

is a monotonically increasing function of S, and therefore can be considered a useful
proxy of the saturation variable S. [Compare Figures 1(c) and 1(d), and see Figure 3.]

Figure 2(a) includes the same sandstone data from Figure 1, along with other sandstone
data. Similar data for five limestone samples (Cadoret et al., 1998) are plotted in Figure 2(b).
The straight line correlation of the data in the sandstone display is clearly reconfirmed by the
limestone data. Numerous other examples of the correlation have been observed. [Fully dry
and fully saturated examples are shown here for some of these examples in Figures 2(c) and
2(d), for which partial saturation data were unavailable.] No examples of appropriate data for
partially saturated samples have exhibited major deviations from this behavior, although an
extensive survey of available data sets has been performed for materials including limestones
(Cadoret et al., 1998), sandstones (Murphy, 1984; Knight and Nolen-Hoeksema, 1990), gran-
ites (Nur and Simmons, 1969), unconsolidated sands, and some artificial materials such as
ceramics and glass beads (Berge et al., 1995). This straight line correlation is a very robust
feature of partial saturation data. The mathematical trick that brings about this behavior will
now be explained.

Consider the behavior as increases for fixed S. Two of the parameters ( and ) decrease
as increases, but at different rates, while the third ( ) can have arbitrary variation. [Recall

et al., 1987) that rigorous bounds on the parameters are: 0 K , 0 ,
0 , and 2

3 .] To understand the behavior on these plots in Figure 1 as
changes, it will prove convenient to consider polar coordinates (r , ), defined by

r2 4
2 2

, (7)
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and

tan
2

, (8)

where is an arbitrary scale factor with dimensions of velocity (chosen so that r is a dimen-
sionless radial coordinate for plots like those in Figure 1). Now, if in addition we choose
to be sufficiently large so that s 1 for typical values of s in our data sets, then, using
standard perturbation expansions, we have

r 2 1
4
s
4

1
2

2 1
4
s

2 4
(9)

and

tan 1
2
s
2

2
s
2
. (10)

Thus, the angle is well approximated by the ratio in (10), which depends only on the shear
velocity s . We know the shear velocity is a rather weak function of saturation [e.g., Figure
1(a)], but a much stronger function of porosity [see, for example, Berge et al. (1995)]. So
we see that the angle in these plots is most strongly correlated with changes in the porosity.
In contrast, the radial position r is principally dependent on the ratio , which we have
already shown to be a strong function of the saturation S, especially in the region close to full
liquid saturation. This analysis shows why the plots in Figures 1(b) and 2 look the way they
do and also why we might be inclined to call these quasi-orthogonal (polar) plots of saturation
and porosity. Because of the function these plots play in our analysis, we will call them the
“data-sorting” plots.

In contrast, the plots in Figure 3 contain information about fluid spatial distribution, as
will be discussed at greater length later in this paper. The bulk modulus K f contains the only
S dependence in (2). Thus, for porous materials satisfying Gassmann’s homogeneous fluid
conditions and for low enough frequencies, the theory predicts that, if we use velocity data
in a two-dimensional plot with one axis being the saturation S and the other being the ratio

( p s)2 2, then the results will lie along an essentially straight (horizontal) line until
the saturation reaches S 1 (around 95% or higher), where the curve formed by the data will
quickly rise to the value determined by the velocities at full liquid saturation. On such a plot,
the drained data appear in the lower left while the fully saturated data appear in the upper right.
This behavior is illustrated in Figure 3(a) for Espeil limestone. The behavior of the other plots
in Figure 3 will be described below.

Before leaving this discussion of homogeneous saturation, we should note that there is one
laboratory saturation technique for which it is known — from direct observations (Cadoret et
al., 1998) using x-ray imaging — that very homogeneous liquid-gas mixtures will generally be
produced. This method is called “depressurization.” When such data are available (see Figure
3), we expect they will always behave according to the Gassmann-Domenico predictions. In
contrast, the more common approach which produces drainage data is less predictable, since
the manner and rate of drainage depend strongly on details of particular samples — especially
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on surface energies that control capillarity and on permeability magnitude and distribution.
Thus, the drainage technique can produce homogeneous saturation, or patchy saturation, or
anything in between.

Patchy saturation

The preceding analysis centered on homogeneous saturation of porous media. On the other
hand, consider a porous medium containing gas and liquid mixed in a heterogeneous man-
ner, so that patches of the medium hold only gas while other patches hold only liquid in the
pores. Then, the theory predicts that, depending to some extent on the spatial distribution of
the patches, the results will deviate overall from Gassmann’s results (although Gassmann’s
results will hold locally in each individual patch). If we consider the most extreme cases of
spatial distribution possible, which are laminated regions of alternating liquid saturation and
gas saturation, then the effective bulk modulus will be determined by an average of the two
extreme values of (2): K S 0 Kdr and K S 1. Using saturation as the weighting factor, the
harmonic mean and the mean are the two well-known extremes of behavior (Hill, 1952). Of
these two, the one that differs most from (2) for 0 S 1 is the mean. And, because of K ’s
linear dependence on both and , and ’s independence of S, we therefore have

patchy(S) (1 S) dr S S 1. (11)

So, on our plot in the ( , )-plane, the results for the mean will again lie along a straight
line, but now the line goes directly from the unsaturated value (S 0) to the fully saturated
value (S 1) [e.g., Figure 3(e)]. The two straight lines described [the one given by (11) and
the horizontal one discussed in the preceding paragraph for saturations up to about 95%] are
rigorous results of the theory, and form two sides of a triangle that will contain all data for
partially saturated systems, regardless of the type of saturation present. The third side of this
triangle provides a rigorous bound on the behavior as full saturation is approached (it just
corresponds to the physical requirement that S 1, so values with S 1 have no physical
significance). In general, heterogeneous fluid distribution can produce points anywhere within
the resulting triangle, but not outside the triangle (within normal experimental error).

A brief presentation of some examples (Figure 3) will now follow a reminder of an impor-
tant and well-known caveat.

Caveats for chemical effects

Some deviations from these conclusions can be expected at the lowest saturations. Chemical
effects, which have not been accounted for in the mechanical analysis, can and often do lead
to the situation that dry and drained (nearly dry or room dry) samples have somewhat differ-
ent properties (Bonner et al., 1997). These differences are larger than can be explained by
mechanical analyses alone. [For example, see Figures 3(a) and 3(b). Take special note of the
three lowest saturation values in these Figures.] We discuss this point at greater length in the
Discussion section.
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Some illustrative examples

Figure 3 shows three examples of the results obtained with plots in the (S, )-plane and
in the ( , )-plane (using as a proxy for S) for two limestones and one andesite
from laboratory data of Cadoret (1993) and Cadoret et al. (1995; 1998). In Figure 3, the true
saturation data are used in the Figures on the left and the proxy for saturation ( ) is used
on the right. We therefore call the right hand diagrams “saturation-proxy” plots. Using the
interpretations arising for our analysis of Gassmann-Domenico partial-saturation theory, we
see that Figures 3(a) and (b) indicate homogeneous mixing of liquid and gas, while Figures
3(e) and (f) indicate extremely patchy mixing, and Figures 3(c) and (d) show an intermediate
state of mixing for the drainage data, but more homogeneous mixing (as expected) for the
depressurization data. The Espeil limestone was observed to be the most dispersive of all
those rocks considered in the data sets of Cadoret (1993) and Carodet et al. (1995; 1998). So
this case is a very stringent test of the method. In fact, if we were to plot the corresponding
data for Espeil limestone at 500 kHz, we would not find such simple and easily interpreted
behavior on these plots. Our explanation for this difference between the 500 kHz and 1 kHz
results for Espeil limestone is that the dispersion introduces effects not accounted for by the
simple Gassmann-Domenico theory, and that there is then no reason to think that our method
should work for such high frequencies as 500 kHz. We have found other examples where it
does work for frequencies higher than one might expect the method to be valid. The point is
that, if we restrict the range of frequencies considered to 1 kHz or less, the method appears
to work quite well on most (and perhaps all) samples. [But, at higher frequencies, the solid
and fluid can move out of phase and other relations developed by Biot (1956a,b; 1962) and
others (O’Connell and Budiansky, 1977; Mavko and Nur, 1978; Berryman, 1981; McCann
and McCann, 1985; Johnson et al., 1987; Norris, 1993; Best and McCann, 1995) apply.]

DISCUSSION

Rocks containing more than one mineral

The analysis presented here has been limited for simplicity to the case of single mineral porous
rocks. In fact the main parts of the analysis do not change in any significant way if the rock
has multiple constituents. The well-known result of Brown and Korringa (1975) states that

K Kdr

2

Ks K K f
and dr , (12)

where Ks is the unjacketed bulk modulus of the composite solid frame, K is the unjacketed
pore modulus of the composite solid frame, 1 Kdr Ks is the appropriate Biot-Willis
(1957) parameter for this situation. The remaining parameters have the same significance as
in (2). The functional dependence of Ksat on the saturation S is clearly the same in both
formulas. If we were trying to infer properties of the solid from these formulas, then of course
(12) would be more difficult to interpret. But for our present purposes, we are only trying
to infer porosity, saturation values, and saturation state. For these physical parameters, the
analysis goes through without change.
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On uniqueness of -diagrams

Since the possible linear combinations of the elastic bulk and shear moduli (K and ) are
infinite, it is natural to ask why (or if) the choice K 2

3 is special? Is there perhaps some
other combination of these constants that works as well or even better than the choice made
here? There are some rather esoteric reasons based on recent work (Berryman et al., 1999)
in the analysis of layered anisotropic elastic media that lead us to believe that the choice is
indeed special, but we will not try to describe these reasons here. Instead we will point out
some general features of the two types of plots that make it clear that this choice is generally
good, even though others might be equally good or even better in special circumstances. First,
in the diagram using the ( , )-plane, it is easy to see that any plot of data using linear
combinations of the form ( , ( c ) ), where c is any real constant, will have precisely
the same information and the display will be identical except for a translation of the values
along the ordinate by the constant value c. Thus, for example taking c 2

3 , plots of ( ,
K ) will have exactly the same interpretational value as those presented here. But, if we now
reconsider the data-sorting plot (e.g., Figure 2) for each of these choices, we need to analyze
plots of the form ( ( c ), ( c )). Is there an optimum choice of the parameter c that
makes the plots as straight as possible whenever the only variable is the fluid saturation? It is
not hard to see that the class of best choices always lies in the middle of the range of values
of taken by the data. So setting c 1

2 (min( ) max( )) will always guarantee
that there are very large positive and negative values of ( c ), and therefore that these
data fall reliably (if somewhat approximately) along a straight line. But the minimum value
of has an absolute minimum of 2

3 , based on the physical requirement of positivity of
K . So c 2

3 is a physical requirement, and since max 2
3 is a fairly typical value

for porous rocks, it is expected that an optimum value of c 0 will generally be obtained
using this criterion. Thus, plots based on bulk modulus K instead of will not be as effective
in producing the quasi-orthogonality of porosity and saturation that we have obtained in the
data-sorting style of plotting. We conclude that the choice is not unique (some other choices
might be as good for special data sets), but it is nevertheless an especially simple choice and
is also expected to be quite good for most real data.

Transforming straight lines to straight lines

One important feature concerning connections betweens the points in the two planes ( ,
) and ( , ) is the fact that (with only a few exceptions that will be noted) straight

lines in one plane transform into straight lines in the other. For example, points satisfying

A B (13)

in the ( , )-plane (where A and B are constant intercept and slope, respectively), then
satisfy

A 1 A 1 B (14)
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in the ( , )-plane. So long as A 0 in (13), the straight line in (13) transforms into
the straight line in (14). This observation is very important because the straight line in (11)
corresponds to a straight line in the saturation-proxy plot in the ( , )-plane. But this line
transforms into a straight line in data-sorting plot in the ( , )-plane. In fact the apparent
straight line along which the data align themselves in these plots is just this transformed patchy
saturation line.

When A 0 in (13) [which seems to happen rarely if ever in the real data examples, but
needs to be considered in general], the resulting transformed line will just be one of constant

B 1, which is a vertical line on the ( , )-plane. The more interesting special
case is when B 0, in which situation A or A 1. But this case includes that
of Gassmann-Domenico for homogeneous mixing of the fluids at low to moderate saturation
values. For B 0, on both planes we have horizontal straight lines, but their lengths can differ
significantly on the two displays.

Interpreting the data point locations

Data points inside the triangle

The triangle described in Section 3.3 provides rigorous bounds on mechanical properties of
porous media. For plots in the ( , )-plane such as those included in Figure 1(d) and
Figures 3(b), 3(d), and 3(f), some data points lie between the ideal patchy saturation line
and the Gassmann ideal lower bound. The relative position of the data points may contain
information about the fluid distribution. Consider the case of a core sample that is nearly
saturated, above 90% for example. If the weight of the core is used to determine the saturation
but the core contains a few gas bubbles, the background saturation will be underestimated
and the bubbles themselves represent patches. This is an example of a material having a few
isolated patches contained in an otherwise homogeneous partially-saturated background. Such
data would plot above but close to the Gassmann curve. In an analogous case for field seismic
data, the background saturation may be known from measurements made at lower frequencies
or in a nearby region, and it may be possible to use such information to determine the relative
volume of patches. For data lying in the middle (i.e., between the bounding curves), some
assumptions about fluid distribution could be made and then various estimates about patchy
volumes could be applied to different models such as the Hashin-Shtrikman bounds (Hashin
and Shtrikman, 1962) or effective medium theories. Exploration of these issues will be the
subject of future work.

Data points outside the triangle

The sides of the triangle described above set rigorous boundaries for effects associated with
homogeneous saturation and patchy saturation at low frequencies or for situations in which
frequency-dependent dispersion can be neglected. However, when the data do not in fact sat-
isfy these assumptions of the theory, plotting the data this way provides an opportunity to
observe and interpret deviations from the behavior predicted by the theory. For example, data
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which plot above the patchy saturation line represent excessively stiff rock. One possible cause
of systematically high stiffness values is frequency-dependent dispersion (Biot, 1956a,b; Biot,
1962; O’Connell and Budiansky, 1977; Mavko and Nur, 1978; Berryman, 1981; McCann
and McCann, 1985; Johnson et al., 1987; Norris, 1993; Best and McCann, 1995). Chemical
effects, not taken into account in the analysis, might also cause measurements to deviate sys-
tematically from predicted behavior. For example, adhesive effects associated with chemical
reactions between pore fluid and solid constituents might cause systematically high values.
Another consequence of rock-water interactions is softening of intragranular cements. In this
case, data for susceptible rocks would systematically plot below the Gassmann line at low sat-
urations. Direct indications from elastic data of rock-water interactions [e.g., see Bonner et al.
(1997)] may lead to new methods of determining other rock properties controlled by chemical
effects, such as the tensile strength.

CONCLUSIONS

We have shown that seismic/sonic velocity data can be transformed to polar coordinates that
have quasi-orthogonal dependence on saturation and porosity. This observation is based on the
Gassmann-Domenico relations, which are known to be valid at low frequencies. The trans-
formation loses its effectiveness at high frequencies whenever dispersion becomes significant,
because then Biot theory and/or other effects play important roles in determining the velocities.
So, the simple relations between p, s , and , , , and S break down at high frequencies. Our
results are, nevertheless, quite encouraging because the predicted relationships seem to work
in many cases up to frequencies of 1 kHz, and in a few special cases to still higher frequencies.
These results present a straightforward method for obtaining porosity, saturation, and some in-
formation about spatial distribution of fluid (i.e., patchy versus homogeneous) in porous rocks
and sediments, from compressional and shear wave velocity data alone. These results have po-
tential applications in various areas of interest, including petroleum exploration and reservoir
characterization, geothermal resource evaluation, environmental restoration monitoring, and
geotechnical site characterization. The methods may also provide physical insight suggesting
new approaches to AVO data analysis.
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Figure 1: Various methods of plotting 560 Hz Massillon sandstone data of Murphy (1984):
(a) Compressional and shear wave velocities as a function of saturation, (b) transform to ( ,

)-plane, (c) versus saturation, (d) transform to ( , )-plane. All of these behav-
iors are anticipated by the Gassmann-Domenico relations for homogeneously mixed fluid in
the pores.
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Figure 2: Examples of the correlation of slopes with porosity in the data-sorting plots: (a)
three Spirit River (S.R.) sandstone (Knight and Nolen-Hoeksema, 1990) and Massillon and
Ft. Union sandstones (Murphy, 1984), (b) five limestones (Cadoret et al., 1998), (c) 11 fused
glass-bead samples (Berge et al., 1995), (d) Westerly granite (Nur and Simmons, 1969) at
four pressures. The observed trend is that high porosity samples generally have lower slopes
than lower porosities on these plots, although there are a few exceptions as discussed in the
text. These trends are easily understood since the slopes are determined approximately by the
average value of 2

s for each material, which is a decreasing function of porosity .
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Figure 3: parameter ratio plotted versus (a) saturation and (b) for Espeil
limestone, (c) saturation and (d) for Brauvilliers limestone, and (e) saturation and (f)
for Volvic andesite. All extensional and shear wave measurements (Cadoret, 1993; Cadoret
et al., 1995; 1998) were made at 1 kHz. Note that (a) and (b) indicate homogeneous mixing
of liquid and gas, (e) and (f) indicate extremely patchy mixing, while (c) and (d) show an
intermediate state of mixing for the drainage data, but more homogeneous mixing for the
depressurization data. The plots on the right are saturation-proxy plots, having essentially the
same behavior as the plots on the left but requiring only velocity data.
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