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Spitz makes a better assumption for the signal PEF

Jon Claerbout and Sergey Fomel1

ABSTRACT

In real-world extraction of signal from data we are not given the needed signal prediction-
error filter (PEF). Claerbout has taken S, the PEF of the signal, to be that of the data,
S D. Spitz takes it to be S D N . Where noises are highly predictable in time or
space, Spitz gets significantly better results. Theoretically, a reason is that the essential
character of a PEF is contained where it is small.

INTRODUCTION

Knowledge of signal spectrum and noise spectrum allows us to find filters for optimally sepa-
rating data d into two components, signal s and noise n (Claerbout, 1999). Actually, it is the
inverses of these spectra which are required. In Claerbout’s textbook example (1999) he esti-
mates these inverse spectra by estimating prediction-error filters (PEFs) from the data. He es-
timates both a signal PEF and a noise PEF from the same data d. A PEF based on data d might
be expected to be named the data PEF D, but Claerbout estimates two different PEFS from d
and calls them the signal PEF S and the noise PEF N . They differ by being estimated with
different number of adjustable coefficients, one matching a signal model (two plane waves)
having three positions on the space axis, the other matching a noise model having one position
on the space axis.

Meanwhile, using a different approach, Spitz (1999) concludes that the signal, noise, and
data inverse spectra should be related by D S N . The conclusion we reach in this paper is
that Claerbout’s estimate of S is more appropriately an estimate of the data PEF D. To find
the most appropriate S and N we should use both the “variable templates” idea of Claerbout
and the D S N idea of Spitz. Here we first provide a straightforward derivation of the Spitz
insight and then we show some experimental results.

1email: claerbout@stanford.edu, sergey@sep.stanford.edu
This paper should have been in SEP-102 but tragedy intervened.
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BASIC THEORY

Signal spectrum plus the noise spectrum gives the data spectrum. Since a prediction-error
filter tends to the inverse of a spectrum we have
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Now we are ready for the Spitz approximation. Spitz builds his applications upon the as-
sumption that we can estimate D and N from suitable chunks of raw data. His result may be
obtained from (3) by ignoring its denominator getting D S N or

S D N (4)

Ignoring the denominator in equation (3), is not so terrible an approximation as it might seem.
Remember that PEFs are important where they are small because they are used as weighting
functions. Where weighting functions are small, solutions are expected to be large. Although
Claerbout’s assumption S D might be somewhat valid for signal and data spectra, it is much
less valid for their PEFs. In practice, signal unpolluted with noise is usually not available.
Even a very good chunk of data tends to yield a poor estimate of the signal PEF S because the
holes in the signal spectrum are easily intruded with noise.

Obviously the major difference between S D and S D N is where the noise is large.
Thus it is for “organized and predictable” noises (small N ) where we expect to see the main
difference.

Theoretically, we need not make the Spitz approximation. We could solve (1) for S by
spectral factorization. Although the S obtained would be more theoretically satisfying, there
would be some practical disadvantages. Getting the signal spectrum by subtracting that of
the noise from that of the data leaves the danger of a negative result (which explodes the
factorization). Thus, maintaining spectral positivity would require extra care. All these extra
burdens are avoided by making the Spitz approximation. All the more so in applications with
continuously varying estimates.

SIGNAL AND NOISE SEPARATION

We assume that the data vector d is composed of the signal and noise components s and n:

d s n . (5)
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If both the signal and noise prediction-error filters S and N are known, then the signal can be
extracted from the data by solving the following system by the least squares method:

0 Nn N(d s) ; (6)

0 Ss , (7)

where is a scalar scaling coefficient, reflecting the presumed signal-to-noise ration (Claer-
bout, 1999).

The formal solution of system (6-7) has the form of a projection filter:

s
N N

N N 2S S
d . (8)

Analogously, the signal vector is expressed as

n d s
2S S

N N 2S S
d . (9)

In 1-D or F-X setting, one can accomplish the division in formulas (8) and (9) directly by
spectral factorization and inverse recursive filtering (Soubaras, 1995, 1994). A similar ap-
proach can be applied in the case of T -X or F-XY filtering with the help of the helix transform
(Claerbout, 1998; Ozdemir et al., 1999) or by solving system (6-7) directly with an iterative
method (Abma, 1995).

Claerbout’s approach, implemented in the examples of GEE (Claerbout, 1999), is to esti-
mate the signal and noise PEFs S and N from the data d by specifying different shape tem-
plates for these two filters. The filter estimates can be iteratively refined after the initial signal
and noise separation. In some examples, such as those shown in this paper, the signal and
noise templates are not easily separated. When the signal template behaves as an extension
of the noise template so that the shape of S completely embeds the shape of N , our estimate
of S serves as a predictor of both signal and noise. We might as well consider it as D, the
prediction-error filter for the data.

Spitz (1999) argues that the data PEF D can be regarded as the convolution of the signal
and noise PEFs S and N . This assertion suggests the following algorithm:

1. Estimate D and N .

2. Estimate S by deconvolving (polynomial division) D by N .

3. Solve the least-square system (6-7).

To avoid the division step, we suggest a simple modification of Spitz’s algorithm, which re-
sults from multiplying both equations in system (6-7) by the noise filtering operator N. The
resulting system has the form

0 N2n N2(d s) ; (10)

0 NSs Ds . (11)

The modified algorithm is
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1. Estimate D and N .

2. Convolve N with itself.

3. Solve the least-square system (10-11).

The formal least-squares solution of system (10-11) is

s
N N NN

N N NN 2D D
d

N N NN
N N NN 2N S SN

d . (12)

Comparing (12) with (8), we can see that both the numerator and the denominator in the two
expressions differ by the same multiplier N N. This multiplication should not effect the result
of projection filtering.

Figure 1 shows a simple example of signal and noise separation taken from GEE (Claer-
bout, 1999). The signal consists of two crossing plane waves with random amplitudes, and
the noise is spatially random. The data and noise T -X prediction-error filters were estimated
from the same data by applying different filter templates. The template for D is

a a

a a

a a

1 a a

a a a

a a a

a a a

where the a symbol represents adjustable coefficients. The data filter shape has three columns,
which allows it to predict two plane waves with different slopes. The noise filter N has only
one column. Its template is

1

a

a

a

The noise PEF can estimate the temporal spectrum but would fail to capture the signal pre-
dictability in the space direction. Figure 2 shows the result of applying the modified Spitz
method according to equations (10-11). Comparing figures 1 and 2, we can see that using a
modified system of equations brings a slightly modified result with more noise in the signal
but more signal in the noise. It is as if has changed, and indeed this could be the principal
effect of neglecting the denominator in equation (3).

To illustrate a significantly different result using the Spitz insight we examine the new
situation shown in Figures 3 and 4. The wave with the positive slope is considered to be
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Figure 1: Signal and noise separation with the original GEE method. The input signal is on
the left. Next is that signal with random noise added. Next are the estimated signal and the
estimated noise. jon1-signoi90 [ER]

Figure 2: Signal and noise separation with the modified Spitz method. The input signal is on
the left. Next is that signal with random noise added. Next are the estimated signal and the
estimated noise. jon1-signoi [ER]
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regular noise; the other wave is signal. The noise PEF N was estimated from the data by
restricting the filter shape so that it could predict only positive slopes. The corresponding
template is

a

1 a

The data PEF template is

a a

a a

1 a a

a a a

a a a

Using the data PEF as a substitute for the signal PEF produces a poor result, shown in Figure 3.
We see a part of the signal sneaking into the noise estimate. Using the modified Spitz method,
we obtain a clean separation of the plane waves (Figure 4).

Figure 3: Plane wave separation with the GEE method. The input signal is on the left.
Next is that signal with noise added. Next are the estimated signal and the estimated noise.
jon1-planes90 [ER]

Clapp and Brown (1999, 2000) and Brown et al. (1999) show applications of the least-
squares signal-noise separation to multiple and ground-roll elimination.
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Figure 4: Plane wave separation with the modified Spitz method. The input signal is on the
left. Next is that signal with noise added. Next are the estimated signal and the estimated
noise. jon1-planes [ER]
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