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Spectral factorization of 2-D reflection seismic data

Jon Claerbout1

ABSTRACT

I propose spectral factorization of 2-D seismic data. Boulders strewn on the water bottom
of an otherwise horizontally layered earth imply that the multidimensional minimum-
phase wavelet of a zero-offset section is a common midpoint gather.

INTRODUCTION

Recently, math professor George Papanicolaou delivered a seminar to our Geophysics De-
partment in which he presented to us an amazing proposition: Random scatterers can give us
superresolution because they can enlarge the effective aperture.

I will propose it this way: Scatterers give rise to seismic coda. Maybe we can use it
effectively even though we may not know the location of the scatterers.

In this paper I sketch how this could happen in the realistic case of near-surface scattering
and I indicate how it could be tested and demonstrated.

Except for one essential feature, the earth model that we examine in this initial exploratory
phase is a two-dimensional horizontally layered earth. The essential departure is that the top
roughness that acts as point scatterers. We might think of it as fine scale surface topography.
Alternately, we might think of it as a thin water layer with boulders strewn around, all acting as
point scatterers of random amplitude, polarity and location. The one-dimensional earth model
itself has arbitrary velocity (z), multiple reflections, shear waves, anisotropy, etc. Visualize
this geometry:
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We are interested in ray paths like the one from the shot s to the reflector, to the rock r9,
to the reflector, to the geophone g. Both paths to and from the rock r9 include all arrivals,
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both direct and reflected. We convolve the 1-D simple earth’s s to r9 response with its r9 to
g response. Whatever the response is to one rock, the response to all the rocks will be the
one-rock response convolved horizontally by random numbers.

There will be several conjectures. The simplest is that from a zero-offset section, spectral
factorization (Kolmogoroff, 1939) via the helix (Claerbout, 1998) manufactures a common
midpoint gather from which we can do velocity analysis.

SUBTRACT ANY TWO SHOT GATHERS

We will soon be doing some data-guided theory. Carefully examine Figure 1. I have only this
one shot gather (a photo image) but I’d like you to imagine two of them. Imagine the earth
really is a one-dimensional layered medium with surface scatterers. Then the two shot gathers
would look identical EXCEPT for the diffraction at 250m offset. This diffraction would be
differently positioned on each shot gather depending on the distance of the shot from the
surface scatterer. Let us subtract these two gathers. Now the layered media reflectors all go
away and we have a gather containing only two copies of the surface diffraction.

To study the surface scatter events, we need to be rid of the layered media primary events.
These could be gotten rid of by the simple subtraction or they could be gotten rid of by a spatial
lowpass filter or a spatial PEF, or in the event of gentle dip, by various kinds of "steering
filters". We can return to the practical issue of separating the simple reflections from the
surface scatter after we have covered some matters of principle.

2-D AUTOCORRELATION OF SURFACE SCATTERED RETURNS

Here we show theoretically that the 2-D autocorrelation (or 2-D spectrum) of surface scattered
reflections is the same as that of the primary reflections. Thus by autocorrelation we will
concentrate information that could be widely distributed in time and space. Later, we’ll convert
the autocorrelation to something more familiar.

Let the layered earth response from shot s to geophone g be u(s, g, t) u(0, g s, t)
u(g s, t) or in Fourier space, u(g s, ) or simply u(g s). When an upcoming wave hits
the earth surface at g1 it encounters a scattering object which reflects the primary wave with
a random scaling (g1). The signal at g1 then takes off for a second flight like a multiple
reflection, but departing in all directions. We are going to build the theoretical 2-D spectrum
of this surface scattered wave from the theoretical 2-D spectrum of u, the layered media
primary reflection.

First we express the cascade of the two bounces. The arrival at g2 at time t is the sum
of the time of each bounce, and t . Since this is a convolution in the time domain, we
express it as a product in the frequency domain. Then we form the complex conjugate of this



SEP–103 Factorizing 2-D seismic data 125

Figure 1: Shell shot gather from IEI page 172 (paper version) section 3.2.
(/book/iei/Fig/ofs/shell.ps) Observe the scattered ground roll with its apex at 250 m offset.
It is interesting to identify the ray paths of ALL the backscattered energy. Might you believe
the diffraction at 250 m offset is a weaker copy of the entire shot gather but shifted 250 m and
.17 s? If you do, you will recognize that this copy also contains (albeit weakly) the near zero
offset traces that are missing from the the recording of the gather itself. jon4-shell [NR]
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expression in preparation for autocorrelation on the x-axis.

(s, g2, t)
g1

u(s, g1, ) u(g1, g2, t ) (g1) (1)

(s, g2, )
g1

u(g1 s, ) u(g2 g1, ) (g1) (2)

¯ (s, g2 x , )
g3

ū(g3 s, ) ū(g2 x g3, ) ¯ (g3) (3)

We insert the last two expressions into the expression for spatial autocorrelation.

A(s, x)
g2

(s, g2) ¯ (s, g2 x) (4)

We will determine A(s, x) experimentally as described earlier. Here we will see its theoretical
relation to the primary reflected field u.

A(s, x)
g1 g2 g3

u(g1 s) u(g2 g1) ū(g3 s) ū(g2 g3 x) (g1) ¯ (g3) (5)

g1 g2 g3

u(g1 s) u(g2 g1) ū(g3 s) ū(g2 g3 x) (g1 g3) (6)

g1 g2

u(g1 s) u(g2 g1) ū(g1 s) ū(g2 g1 x) (7)

g1

u(g1 s) ū(g1 s)
g2

u(g2 g1) ū(g2 g1 x) (8)

h

u(h) ū(h)
h

u(h) ū(h x) (9)

We Fourier transform over x . The first factor above is not a function of space. It is merely a
function of , say a filter f ( ) 2. Thus our main result:

(s, ,kx) 2 f ( ) 2 u( ,kx ) 2 (10)

We see that in principle, for each shot point s, we measure the spectrum of the impulse
response of the layered medium.

Hazardous cross terms

Suppose that we had not gotten rid of the layered media terms. The observations would be
u and we would be autocorrelating that. Both u and have essentially the same autocor-
relation, but their cross-term is dangerous. It has a different form (as you can verify). This
form multiplies the expectation of (g) which might be theoretically zero but in practice might
often not be zero. In principle we eliminate the cross term by eliminating u from the observa-
tion u , but in practice this difficulty remains to haunt us wherever we find the earth is not
sufficiently horizontally layered.
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AUTOCORRELATION

Need for all autocorrelations to be the same

The surface diffracted events that we might see on a shot gather are probably all much the
same. (Anyway, I am not prepared to discuss their differences. It seems to be an implication
of the theory. This deserves a better explanation or more study.)

Assuming the diffractions are all the same, their autocorrelations are all the same. (Any-
way, if not, we are in big trouble, because then we get a smearing together of all their different
autocorrelations.) The autocorrelation combines all the diffractions despite their different lo-
cations. By combining them, it enhances them. The autocorrelation does the job of merging
the energy of all the scatterers.

There is an issue of the cross correlation of one diffractor with another. We’ll suppose the
cross correlations cancel out because of the random superposition of many shifts and direc-
tions. In practice this could fail if there are a small number of very strong ones.

Several people suggested that I should investigate the effect of random scatterers spread
throughout the earth instead of having them all at the surface. I agree that is an interesting
model to study, but I feared it because we all recognize that reflectors at all different depths
will produce different hyperbolas. We dare not autocorrelate such data until we have processed
it so that all hyperbolas look the same.

Spectral factorization

The trouble with the autocorrelation of the CSG is that we are not accustomed to it. We don’t
know how to think about it. We would rather have the CSG itself. This suggests spectral
factorization. In one dimension it is ancient knowledge that spectral factorization finds us
an impulse response function of the system. Using the helix (Claerbout, 1998), in helioseis-
mology (Rickett and Claerbout, 1999a) (Rickett and Claerbout, 1999b) we found that we can
recover a multidimensional causal acoustic impulse response of the sun instead of "autocorre-
lation wavelets" that helioseismologists had been getting. Now we conjecture that we can do
something similar here:

CONJECTURE: A spectral factorization of the (autocorrelation of the) shot-geophone
reflection data should give us the "multidimensional impulse response" of the earth.

There are some pitfalls with spectral factorization, but they are fairly well understood and
they have often been overcome in the past.
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What if the autocorrelation is bigger than the cable?

Consider the case where the cable is much shorter than the spatial autocorrelation of the
diffractor. This would appear to be a troublesome case. We may notice from the Shell gather
in Figure 1 that a limited range of offsets could allow us to see all offsets because of the pres-
ence of the scatterers at all ranges. If, however, we measure an autocorrelation over a small
range, could spectral factorization possibly construct a minimum phase wavelet over a large
range? I fear not. On the other hand, we can enlarge the aperture of a single shot by the idea
of synthetic aperture. Let us see how this might be done.

Data layout

Ordinarily we think of reflection data as three dimensional, P(t , g,s). That is because we
redefine time to begin anew at t 0 for each shot. Now let us use the more natural time,
the wall clock time during data acquisition. Suppose the gun fires every 10 s for 10,000 s.
Thus we have 1000 shots along a horizontal survey line. At each receiver we have this entire
10,000 s signal. We have one such a signal at each geophone. There is no shot axis. Thus the
data is intrinsically two-dimensional, P(t , g). Next we use the helix, as always, to wrap both
t and g into one super-long signal. Apply spectral factorization, and unwrap the helix. What
we should have is an estimate of the simple CSG we began with.

What is new, however, is very new and very interesting. When data is autocorrelated, it is
averaged. In any average, some of the terms may be omitted if the sum is normalized properly.

I hypothesize that we’ll have a very similar autocorrelation if we are missing many of the
recordings. In particular, I propose to consider only the zero-offset traces. Forget about that
long recording streamer! I hypothesize that the 2-D spectral factorization of the ZOS can give
us a shot profile with all 1000 receivers.

CONJECTURE: The spectral factorization of the (autocorrelation of the) zero-offset sec-
tion is the common midpoint gather.

This conjecture seems plausible when we recall that the ZOS amounts to the simple CSG
convolved on the horizontal axis with a line of random numbers. The autocorrelation elimi-
nates the random numbers and the spectral factorization recovers the CSG.

The proposal is really amazing: We could throw away our marine streamer and have only
one receiver and hence only one point on the offset axis, yet the rocks randomly placed on the
water bottom create for us a CMP gather that we could use for for velocity analysis. We better
try it!

Finally, perhaps we can produce Cheops’ pyramid.

CONJECTURE: The spectral factorization of the 2-D seismic data is Cheop’s pyramid.
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Spatial aliasing

An omnipresent theme in geophysical surveying is that we never have enough spatial cover-
age. In my book GEE, a theme is that we cope with insufficient data not via autocorrelation
calculation but via prediction-error filter (PEF) estimation. Multidimensional PEFs are also
a natural way to handle non stationarity. No doubt, we could return to the PEF approach for
dealing with scattering too.
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