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Short Note

The Burg Method on a Helix?

Jon Claerbout1

We have not yet put the Burg method of PEF estimation on a helix. The first reason to do so
is that the Burg method assures us a stable PEF. The second reason to do so is that the Burg
method should be much faster than conjugate gradients. For data length ND and filter length
NF, the PEF estimation costs are

Conjugate gradients ND*NF**2

Levinson ND*NF + NF**2

Burg ND*NF

Estimating PEF’s on a helix with the Burg method does not seem difficult: Terms in sums
that involve missing data can simply be omitted from certain averages. We could probably
proceed much as we now do with conjugate gradients (CG).

PEF estimation is not our main problem, however. Our main problem is missing data. The
Burg method has not yet been adapted to missing data estimation but we should try.

It remains to be seen how we can estimate missing values, both off the ends of the data and
internal to it. As with CG, polynomial division seems to be an important part of the solution.

BURG PEF ESTIMATION REVIEW

Burg PEF estimation should work fine on a helix. Full details along with the 1-D code are
found at (Claerbout, 1976). I will quickly review the theory from memory (partly to see how
simple I can make it).

First is the notion that PEFs can be built up from this recursion

AN 1(Z ) AN (Z ) cZ N 1 AN (1 Z ) (1)

where c is in the range 1 c 1. There is a theorem from Algebra that is easy to prove
that if c is in the required range, then AN 1(Z ) will be minimum phase if AN (Z ) is minimum
phase. Since A0 1, all are minimum phase.

Burg’s PEF calculation begins from two copies of the data X (Z ). One, called F(Z ) will
be turned into the forward prediction error A(Z )X (Z ). The other called B(Z ) will be turned
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into the backward prediction error A(1 Z )X (Z ). At each stage of the calculation, we compute
c with this formula

c 2
b f

b b f f
(2)

The triangle inequality shows that for arbitrary f and b, c is in the required range. Given c
we now form an upgraded F and B with f f cb and b b c f . [At successive
iterations, increasing time lag is introduced between f and b. Details in (1976).] When you
are finished, you have F A(Z )X (Z ) and B A(1 Z )X (Z ). Why is that? To understand that
requires delving into 1-D theory, in particular, the Levinson recursion, and we won’t do that
now. [Maybe I can think up an easier explanation later. Perhaps by a sequence of orthogonality
arguments.] I recall if you append a tiny impulse function off the end of X before you start,
when you finish, you will see it has turned into the PEF.

Now let us think about missing data off the ends of the Burgian one-dimensional data
set. Given that we have computed F(Z ) A(Z )X (Z ), then we should find that F(Z ) A(Z )
matches X (Z ) until its end, and it is a logical continuation thereafter. Likewise B(Z ) could
be used for extensions before the beginning of X (Z ). Thus it remains to think about how to
handle gaps in the middle.

BURG PEF ESTIMATION ON A HELIX

Now, how does the Burg method fit on a helix? There is nothing new except for the huge gap
while we wind around the back of the helix. In this gap, we would simply presume c 0 and
we do nothing there. We compute the PEF and the prediction error simply by omitting steps
that we would ordinarily do.

If, however, we intend to use the PE filter, then we have some details to attend to, and
this begins to get complicated. Reviewing the Levinson recursion, we find that gaps internal
to the filter tend to fill as the recursion proceeds. The filter is not as sparse as the reflection
coefficients. We’ll need to keep track of the nonzero filter coefficients. We need to keep
track of them in order that we have a PEF that we can use in polynomial division because
polynomial division is an essential part of finding missing data with the Burg method and
polynomial division is a part of preconditioning the conjugate-gradient method.

A promising thought is that perhaps the Burg recursion can be run backwards. Since
this would take a PEF (or its reflection coefficients) and white inputs (forward and backward
prediction errors) and create a colored outputs, it seems analogous to polynomial division.

When I began multidimensional filtering studies I was ignorant of the helix and thus had
not the opportunity to use the Burg or the Levinson methods. Stability was not an issue until
we began to do preconditioning using polynomial division.
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CONTINUOUSLY VARIABLE PEF’S

Inevitably, we get involved with nonstationarity and we become interested in continuously
variable PEF’s. Again, 1-D theory guides us. We can do regional averaging of c’s and that
preserves minimum phase. Likewise, we can independently average across micropatches the
numerator and denominator of (2). Many people did this in the old days when filter theory
was basically one dimensional.

Polynomial division by nonstationary PEFs made up from an assemblage of stationary
ones need not, however, be necessarily stable, as shown by (Rickett, 1999). He demonstrated
instability when two stable PEFs alternated at alternate time points. Whether this kind of
instability would arise in practice remains to be seen.

ACTION ITEMS

Regretably, I do not recognize any immediately manageable action items. Any Burg-helix
PEF estimation method must include a method for polynomial division or it cannot provide
fast solutions to the missing data problem. Even with a polynomial division method, we’ll still
have some thinking to do.
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http://sepwww.stanford.edu/sep/prof/fgdp/c7/paper_html/node3.html (html)
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