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Accuracy of common-azimuth migration approximations

Louis Vaillant and Biondo Biondi1

ABSTRACT

Common-azimuth migration (CAM) is an attractive solution for 3-D prestack imaging.
It reduces the full 5-D phase-shift operator to 4-D through the stationary-phase approxi-
mation, lowering the computational cost. However, this assumption yields constraints in
the downward-continuation process that can limit accuracy. Those errors are estimated
in this paper by comparison to other wave-equation methods and to analytical solutions.
Common-azimuth migration appears robust, but leaves opportunities for formulating an
extended migration algorithm, which overcomes some of its inherent limits.

INTRODUCTION

Wave-equation migration techniques offer an attractive alternative to widespread Kirchhoff
methods for 3-D prestack depth migration, with modern powerful computing resources. Sev-
eral authors have recently illustrated these techniques’ potential for handling multi-pathing
problems and complex velocity media (Mosher et al., 1997; Biondi, 1997; Vaillant et al.,
2000). This study focuses on the particular case of the common-azimuth migration (CAM)
method and discusses the accuracy of its approximations.

Common-azimuth migration is a 3-D prestack depth migration technique based on the
wave equation (Biondi and Palacharla, 1996). It exploits the intrinsic narrow-azimuth nature of
marine data to reduce its dimensionality. Migration is performed iteratively through common-
azimuth downward-continuation of the wavefield. This common-azimuth downward-
continuation operator is derived from the stationary-phase approximation of the full 3-D
prestack downward continuation operator. Thus, the CAM approach manages to cut the com-
putational cost of 3-D imaging significantly enough to compete with Kirchhoff methods.

Even though CAM is designed for 3-D migration in complex media, we used here only
synthetic data and 1-D velocity models. Our purpose was to identify better its behavior on
simple examples. In this paper, we first discuss wave propagation in constant gradient velocity
media and then analyze migration results of synthetic data.
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RAYS IN CONSTANT GRADIENT VELOCITY MEDIA

Analytical ray tracing

Theory shows that even in a simple 1-D (z) medium, CAM is not perfectly accurate: the
stationary-phase approximation used in the derivation of CAM (Biondi and Palacharla, 1996)
imposes the relation among ray parameters indicated below that constrains rays to keep the
same azimuth at each depth step (Figure 1):
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where the subscripts s and r refer to the rays coming from the source and the receiver, respec-
tively.

Figure 1: Ray geometry imposed by
common-azimuth constraints: both
receiver and source rays keep the
same azimuth at each depth step.
louis1-ray-comaz [NR]
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We choose to test the behavior of rays and the accuracy of CAM approximations in a
synthetic medium where the velocity varies linearly. In such a medium, ray trajectories can be
computed analytically, as well as all ray parameters. Figure 2 illustrates the geometry of the
problem. With those notations, ray curvature can be expressed as (Aki and Richards, 1980):

v
sin (2)

In constant gradient velocity media where (z) 0 z, the ray curvature is thus constant,
i.e., rays are portions of circles included in a vertical plane. The radius of those circles is

R
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The ratio sin (z)
(z) is also the horizontal component p of the slowness vector along the ray,

which therefore is also a constant:
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After some calculation (see Appendix), the equation of the circle of radius R passing
through point source S( s , zs) with initial incident angle s is, in the plane (S, , z):
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Figure 2: Ray geometry in a constant gradient velocity medium. louis1-ray-vgrad [NR]

For any given triplet of points (S,P,R), respectively source, image point and receiver lo-
cations, there exist only two circles satisfying equation (5) that form the complete ray path.
Figures 3 to 5 illustrate such ray paths. We can verify that the projections of the source ray
and the receiver ray on the cross-line plane do not coincide in general and therefore break the
assumption of azimuth conservation in CAM downward-continuation imposed by relation (1).

Figure 3: Example of 3-D analytical
ray tracing, with the three projections
of both rays on vertical and horizontal
planes. Source and receiver location
are indicated with solid stars. The re-
flection point and its three projections
are represented by a circle. Offset is
3000m (in-line). Velocity is (z)
1500 0.5z m/s. louis1-ray_exmpl1
[ER]
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However, with too strong a velocity gradient, rays quickly start to overturn (Figure 4). The
corresponding reflection cannot be imaged with one-way wave propagation methods, such as
CAM and the other wave-equation migration methods we discuss in this paper.
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Figure 4: Same geometry as be-
fore. The only difference is in
the velocity: (z) 1500 z m/s.
The source ray has overturned be-
cause of the stronger velocity gradi-
ent. louis1-ray_exmpl2 [ER]
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Figure 5: Velocity law is (z)
1500 0.5z m/s. The reflection point
is at an equal distance from source
and receiver: the problem is symmet-
rical and azimuth is conserved at each
depth step. louis1-ray_exmpl3 [ER]
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CAM stationary path

In the cartesian coordinate system, the components of the source and receiver slowness vectors
along a ray are

psx
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(6)
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In this context, we can reformulate the expression for the stationary path in CAM theory
(Biondi and Palacharla, 1996), which gives the cross-line offset ray parameter as a function of
velocity and ray parameters:
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(9)

Moreover, since wave propagation can be handled completely analytically in constant gra-
dient velocity, we can calculate the theoretically “exact” cross-line offset wavenumber and
compare it to the values given by the stationary-phase approximation (Equation (9)), as shown
in Figure 6. Here, in the case of a reflection on a plane dipping at 60 and oriented at 45 with
respect to the in-line direction, the stationary path given by Equation (9) is a seriously biased
approximation.

Figure 6: Comparison of the exact
cross-line offset ray parameter phy

(thick solid line) and of the approxi-
mated phy (dashed curve) calculated
with CAM stationary-phase approxi-
mation, in the case of a reflector dip-
ping at about 60 and oriented at 45
with respect to the in-line direction.
louis1-phy_cam [ER]
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MIGRATION OF SYNTHETIC DATA

In order to test further the accuracy of CAM in constant gradient velocity media, we generated
synthetic datasets and migrated them with the following wave-equation algorithms: Offset
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plane-wave migration (Mosher et al., 1997), CAM and full Phase-Shift (5-D operator).

Data modeling

Data were generated using SEPlib Kirmod3d program. The reflectivity map simply consists
of a set of gradually dipping planes, from zero dip to 60 . The azimuth of the planes is 45
with respect to the direction of the acquisition, which maximizes problems in imaging.

Figure 7: Geometry of the set of
slanted planes, dipping at 0 , 15 ,
30 , 45 and 60 towards increasing
x and y, at 45 with respect to the in-
line direction. louis1-planes [ER]
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Data generated are on a regular grid and are common-azimuth, that is, with no cross-line
offset component. The geometry of the grid is illustrated in Figure 8, with 64 samples in
cmp-x and cmp-y, 128 in offset.
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Figure 8: Geometry of the gridded synthetic data. The left represents a midpoint plane
from the whole cube; the right is an offset plane. The common-azimuth cube has no cross-
line offset, but can be zero-padded (light gray) in order to apply a 5-D phase-shift operator.
louis1-dim-grid [NR]
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We used a very fine time sampling (1 ms) in order to minimize interpolation errors dur-
ing modeling with Kirmod3d and sub-sampled data to 2ms afterwards. We generated Green
functions with velocity law (z) 1500 0.5z, which roughly corresponds to typical gradients
found in the Gulf of Mexico.

Examples with several wave-equation migration algorithms

Biondi and Vaillant (2000) discuss the relative accuracy of offset plane-wave migration and
CAM for wave-equation imaging. Both are derived from full downward continuation of 3-D
prestack data with the Double Square Root (DSR) phase-shift operator:
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where is the temporal frequency, km is the midpoint wavenumber vector, kh is the offset
wavenumber vector, (g, z) and (g, z) are the velocity at the source and receiver locations,
respectively.

Offset plane wave (OPW) migration (Mosher et al., 1997) performs migration of each off-
set plane wave component of the data independently. It can be interpreted as a reversed-order
two-pass prestack migration, where an initial cross-line zero-offset migration is followed by
an in-line prestack migration. Another interpretation in that the cross-line offset wavenumber
khy in equation (10) is set to zero for downward continuation:
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Instead, for CAM, the cross-line offset wavenumber khy is replaced in equation (10) by its
stationary path k̂hy given in equation (9):
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Both migrations reduce the full 5-D phase-shift operator to a 4-D operator. In fact, when
no multipathing occurs, only a 4-D slice of the 5-D wavefield contributes to the image.

Figures 9 and 10 show migration results. The final image cube has 4 dimensions, the last
being the common-image gather (CIG) ray parameter axis, generated by slant stack (Prucha
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et al., 1999). The CIGs are flat for the first reflectors (dips 0 30 ) in both images. For OPW
migration, non-flat gathers start at dip 45 , whereas only a dip of 60 causes trouble to CAM.

Figure 9: 3-D cube extracted from the 4-D image cube migrated with CAM, at location cmp-
y=500m. Central panel (cmp-x / depth) shows all 5 dipping planes. Ray parameter domain
CIGs show flat gathers except for the reflector dipping at 60 . louis1-CA-mig-sect1 [CR]

In order to have a reference for comparison, we migrated the 4-D common-azimuth data
with 5-D phase-shift migration, after zero-padding along a fictitious cross-line offset axis (Fig-
ure 8). Figure 11 shows flat gathers even for the most strongly dipping reflectors.

For using the full 5-D phase-shift operator, we added a fictitious cross-line offset axis by
zero-padding common-azimuth data. The “arbitrary” parameters nhy and dhy are chosen in
order to avoid wraparound problems in Fourier Transforms (nhy large enough) and to have the
exact value of khy included in our khy range. In practice, we used nhy 24 and dhy 50m.

The road to Narrow-Azimuth Migration (NAM)

Vaillant and Biondi (1999) reviewed common-azimuth migration theory and examined how
to extend the method to a “narrow” range of azimuths. The previous discussion illustrates
opportunities for obtaining the accuracy of the full 5-D phase-shift operator at a lower cost.
Effectively, most of the contributions to the final image are concentrated in a cross-line offset
wavenumber khy centered around CAM stationary path k̂hy . Summing all contributions co-
herently in such a narrow range (see Figure 12) can reduce the cost of applying the full 5-D
phase-shift operator by a factor of about 5, with potentially the same accuracy at all dips.
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Figure 10: 3-D cube extracted from the 4-D image cube migrated with Offset-plane waves
migration, at location cmp-y=500m. Ray parameter domain CIGs show perturbed gathers for
reflectors dipping at 45 and 60 . louis1-OPW-mig-sect1 [CR]

Figure 11: 3-D cube extracted from the 4-D image cube migrated with a 5-D phase-shift
operator, at location cmp-y=500m. Ray parameter domain CIGs show completely flat gathers
even at steep dips, as expected. louis1-PS-mig-sect1 [CR]
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Figure 12: Same reflector as in Fig-
ure 6. The dashed curve repre-
sents the stationary path k̂hy , with the
estimated range needed for narrow-
azimuth migration on the sides (dot-
ted curves). The solid grey line is the
exact value of khy . Black solid lines
represent the minimum range needed
for the full 5-D phase-shift operator.
louis1-phy_nam [ER]
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CONCLUSIONS AND UPCOMING WORK

The stationary-phase approximation used to derive the CAM algorithm yields constraints in
the downward-continuation process that limit accuracy in imaging, even in 1-D (z) media.
However, those errors only become apparent for really steep reflectors (about 60 ) with an
important cross-line component. CAM is also a more reliable approximation of the 5-D
phase-shift operator than the offset plane-wave algorithm. An even more robust approxima-
tion of the 5-D operator can be the narrow-azimuth migration algorithm, presently in progress.
Eventually, 1-D media only allow us to estimate errors due to varying azimuth in downward-
continuation. We will address issues related to multipathing and lateral velocity variations
using the SEG/EAGE salt dome dataset.
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APPENDIX

Here we derive the equation of circular rays in constant gradient velocity media. Along a
circular ray, the curvilinear abscissa s is, with the previous notations:

ds Rd (A-1)

The equations for the ray trajectory passing through points S( s, zs , s) and P( , z, ) are
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By writing the identity
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at every point along the ray, we obtain the equation of the desired circle:
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