next up previous print clean
Next: About this document ... Up: Vaillant & Biondi: Common-azimuth Previous: REFERENCES

Appendix

Here we derive the equation of circular rays in constant gradient velocity media. Along a circular ray, the curvilinear abscissa s is, with the previous notations:
\begin{displaymath}
ds = R d\theta\end{displaymath} (13)
The equations for the ray trajectory passing through points $S(\rho_s,z_s,\theta_s)$ and $P(\rho,z,\theta)$ are
\begin{eqnarray}
\rho - \rho_s & = &
\int_{\rho_s}^\rho d \rho' = 
\int_{\theta_...
 ...r \\ & = & \frac{1}{\gamma p_\rho} ( \sin \theta - \sin \theta_s )\end{eqnarray}
(14)
(15)

By writing the identity
\begin{displaymath}
\cos^2 \theta + \sin^2 \theta = 
\left[ \gamma p_\rho (\rho_...
 ... 
\left[ - \gamma p_\rho (z_s - z) + \sin\theta_s \right]^2 = 1\end{displaymath} (16)
at every point along the ray, we obtain the equation of the desired circle:
\begin{displaymath}
\left[ \rho - \rho_s - \frac{\cos \theta_s}{\gamma p_\rho} \...
 ...)}{\gamma} \right]^2 =
\left[ \frac{1}{\gamma p_\rho} \right]^2\end{displaymath} (17)


next up previous print clean
Next: About this document ... Up: Vaillant & Biondi: Common-azimuth Previous: REFERENCES
Stanford Exploration Project
4/28/2000