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Patching and micropatching in seismic data interpolation

Sean Crawley1

ABSTRACT

I interpolate CMP gathers with PEFs arranged on a dense, radial grid. The radial grid
facilitates preconditioning by radial smoothing, and enables the use of relatively large grid
cells, which we refer to as micropatches. Even when the micropatches contain enough
data samples that the PEF calculation problem appears overdetermined, radial smoothing
still noticeably improves the interpolation, particularly on noisy data.

INTRODUCTION

In filtering applications, input seismic data are commonly divided into smaller subsets which
we refer to as patches (which are also referred to as windows, gates, and other things). The
data are assumed to be approximately stationary within a patch, but due to practical limits on
patch size, it may not be possible to avoid nonstationarity and poor results in some patches.
This is often true where the data are strongly curved (for spatial filtering) or noisy. An al-
ternative to independent patches is nonstationary filtering. SEP has applied nonstationary
filtering to numerous problems in recent reports, including groundroll suppression (Brown et
al., 1999), multiple suppression (Clapp and Brown, 1999), tomography regularization (Clapp
and Biondi, 1998), deconvolution (Claerbout, 1997), and interpolation (Fomel, 1999; Crawley,
1999). Nonstationary PEFs do not have patch-size limitations, so we may shrink patches down
to arbitrary size and shape. To control the potentially huge null space, we regularize the set of
filters to ensure that PEFs located at similar data coordinates have similar coefficients. This
implements the assumption that dips in the data may change everywhere, but do so smoothly.
Besides being small, these new patches are fundamentally different in that they are not inde-
pendent problems, but related to each other via the regularization. To distinguish them from
the old independent patches, we call them “micropatches”. We have a great deal of freedom in
deciding the size and shape of our micropatches, and in implementing the regularization. This
paper motivates and describes my implementation.

1email: sean@sep.stanford.edu

205



206 Crawley SEP–103

FORMULATION

A standard formulation for calculating PEFs from known data is to solve a linear least-squares
problem like

0 YCa r0, (1)

where a is a vector containing the PEF coefficients, C is a filter coefficient selector matrix,
and Y denotes convolution with the input data. The coefficient selector C is like an identity
matrix, with a zero on the diagonal placed to prevent the fixed 1 in the zero lag of the PEF from
changing. The r0 is a vector that holds the initial value of the residual, Ya0. If the unknown
filter coefficients are given initial values of zero, then r0 contains a copy of the input data. r0

makes up for the fact that the 1 in the zero lag of the filter is not included in the convolution
(it is knocked out by C). When there are many coefficients, as when PEFs are spread densely
on the data grid, it makes sense to add damping equations and/or precondition the problem.
Inserting the preconditioned variable Sp (where S is a somewhat arbitrary smoother) for a
and adding the also somewhat arbitrary roughener R S 1 to regularize the model, gives a
formulation like

0 YKSp r0 (2)

0 Ip (3)

In many cases we can set 0 and just use equation (2), being careful not to let it go for too
many iterations. We still have to define S (or R).

RADIAL SMOOTHING

We have to choose S. Inserting a smoother signifies the assertion that the dips in seismic data
should change in a gradual way. Choosing an isotropic smoother means we expect the dips to
vary similarly in all directions. However, we know that the dip spectrum of the data probably
changes more quickly in some directions than in others. We want to smooth most heavily
along directions where the dip is nearly constant. In a constant-velocity, flat-layered earth,
events fall along hyperbolas like

t2 2 x2

2
,

where x is offset, is stacking velocity, is zero-offset time. The time dip of an event is
dt dx . If velocity is constant, differentiating gives

dt

dx

x
2t

,

which means that the dip does not change along radial lines, where x t is constant. In a real
earth, we suppose that dips will change, but slowly. Real earth velocity may change quickly
in depth, but hyperbola trajectories are functions of RMS velocity, which is smooth. We want
a smoother with an impulse response which is highly elongated in the radial direction. To get
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a big impulse response cheaply, I apply the inverse of a directional derivative, pointed in the
radial direction. To directly apply the inverse, the roughener has to be causal, which means
that the inverse will only smooth in one direction (Claerbout, 1998). We want S to have an
impulse response which is smoothed both in towards zero radius and out towards large radius,
so we make it the cascade of the causal smoother and its anticausal adjoint.

Patches, micropatches, pixels

Having chosen the radial direction, we can think of some different ways of implementing our
radially-smoothed filters. An obvious one is putting a PEF at every point on the data grid, and
devising a derivative filter which adjusts its direction to point at the origin. An alternative is to
overlay a radial grid on the data grid, and arrange PEFs on the radial grid. Here we compare
the two smoothing schemes. Our goal is to assume stationarity in a small enough region
that we can interpolate well where the data do not fit a plane-wave model. In the method of
independent patches, individual patches are treated as separate problems. A patch can not be
arbitrarily small, because it must provide enough fitting equations that the filter coefficients
are well overdetermined. In 1-D, filtering with a PEF looks like this:

û(i )
p

k 0

a(k)u(i k), p ipatchmin i ipatchmax. (4)

The patch boundaries are ipatchmin and ipatchmax, p is the number of adjustable coefficients,
a(0) 1. The lower limit on i is to prevent the filter from running off the end of the data
and encountering implicit zero values. The patches are designed to overlap, and the outputs
are normalized to hide the patch boundaries. In moving to the method of gradually-varying
PEFs, we replace the notion of extracting a subset of the data with that of dereferencing the
data coordinates to find the appropriate filter, as in

û(i )
p

k 0

ai (k)u(i k), p 1 i idatamax. (5)

The index of the data sample i dereferences the set of filters ai (k). The data boundaries i 1
and idatamax replace the patch boundaries. We have lots of freedom in dereferencing ai . In
the limiting cases, all the data may share one PEF, or we can choose ai to be a different set
of coefficients for each data point. In the case where we have a PEF at every data point, we
call S pixel-wise smoothing. Choosing a separate PEF for every input sample is a possibility,
but not necessary. Our motivation for moving away from independent patches was to use one
PEF in a region small enough that we do not have trouble with nonstationarity. Some amount
of patching may still make sense, provided the patches may be small. It is easy to implement
small patches as a generalization of the case above where each data sample has its own PEF.
A particular ai can be the same for any number of values of i without complication. Because
they may be small, we refer to the new patches as “micropatches” to distinguish between them
and independent patches. To subdivide a CMP gather into micropatches, we choose a web-like
grid made up of radial lines and circular lines. Radial lines are a natural choice because we
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want to smooth in the radial direction. Circles are somewhat arbitrary; we could choose flat
lines or reflection-like hyperbolas to cross the radial lines. Circles have the attractive property
that they make equal-area micropatches at a given radius.

Smoothing pixels versus smoothing micropatches

We can choose pixel-wise smoothing or micropatch smoothing. An easy argument favoring
micropatches over pixel-wise smoothing says that putting a filter at every data sample is a
tremendous waste of memory. If the data are predictable at all, they are probably not so
nonstationary that they need a separate PEF at each sample. A single 3-D PEF has easily 20
or more adjustable coefficients, so allocating the set of PEFs requires 20 times the storage of
the input data. Even very small micropatches require much less memory. Micropatches also
have some simplifying side effects that make them preferable to pixel-wise smoothing. One
is apparent from examining Figures 1 and 2. Figure 1 shows smoothing in micropatches and
Figure 2 shows pixel-wise smoothing. In each figure, the values represent filter coefficients
displayed in data coordinates. The axes are time and offset. The top halves show a set of
impulses, labeled d. Md is the impulses binned into micropatches, while Pd is the impulses
binned into pixels (naturally, Pd d). F and F are pixel-wise smoothers pointed towards and
away from zero radius, respectively. C and C are the micropatched smoothers. In this case,
the two are similar, though the pixel-wise smoother obviously produces a higher-resolution
picture (though the micropatches could be made much smaller). The bottom halves show the
same treatment applied to a constant function, labeled 1. M1 has an angular limit applied.
Pixel-wise smoothing creates some very large ridge artifacts, visible in FP1 and F FP1, where
the angle between a data sample and the origin corresponds to an integer slope. Also, where
the constant function is smoothed in towards zero radius, FP1, energy concentrates in a huge
spike at the origin. F F and C C can be thought of as weighting functions in equation (2) (either
F F or C C is used for S in that equation). It is desirable to have the flatter weighting function.
It is also simpler to implement. Producing the many different angles in Figure 2 requires that
the smoothers F and F be made up of many different filters, oriented in a continuous sweep
between a spatial derivative and a time derivative. C and C produce the same range of angles
in Figure 1 using a single, radial derivative filter. The PEFs in micropatches are regularly
gridded in angle and radius, so they are easily smoothed in those directions with old-fashioned
stationary 1-D derivative filters. PEFs at every pixel are instead regularly sampled in time and
offset, so working in polar coordinates requires some work. F uses many coefficients, C uses
two.

Is smoothing necessary?

Using the weblike pattern seen in Figure 1, it is often possible to use fairly large micropatches.
An alternative to radial smoothing may be to simply lengthen the micropatches in the radial
direction, and not bother smoothing at all. I test this in Figures 3 and 4. It seems that smoothing
may have some important effects beyond just statistically compensating for the small size of a
micropatch. Even with very elongated patches, such that the area of a patch is more than large
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Figure 1: Illustration of micropatched radial filter coefficient smoothing. sean1-curtSmear8
[ER]
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Figure 2: Illustration of pixel-wise radial filter coefficient smoothing. sean1-random8 [ER]
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enough for the number of adjustable filter coefficients, smoothing noticeably improves the final
result, particularly where the data have many dips or are noisy. One possible explanation is
that where the data are incoherent, the change in a particular filter coefficient at each iteration
is just an average of data samples, which is approximately zero. With the addition of the
smoother, the change in nearby filter coefficients fills in. Figure 3 shows a section of noise-
free data with many dips, interpolated with PEF smoothing on the left and without on the right.
The top two panels show the interpolated traces (the known input traces are windowed out).
The bottom two panels show the differences between the interpolated traces and the original
traces which were thrown out to make the input. The two panels are similar, though the left
side is noticeably better on some events. Figure 4 shows two more interpolation results. In
this case the data is land data, and much noisier. Both known and interpolated traces are
shown. Because the data is somewhat noisy, it is easier to distinguish between the coherency
of the two panels than picking out differences between particular events. The result using PEF
smoothing, in the left panel, is noticeably more coherent, particularly between 1.2 and 1.6
seconds.

CONCLUSION

We have a great deal of freedom in choosing how to distribute PEFs in the data coordinates, and
in choosing how to implement the smoother between PEFs. Choosing the web-like arrange-
ment of micropatches and smoothing PEFs in radial coordinates gives a nice flat smoother
response, and the ability to use relatively large micropatches without trouble related to nonsta-
tionarity. The large size of the micropatches calls into question whether smoothing is actually
necessary. It turns out that, especially where data are noisy, smoothing continues to be impor-
tant.
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Figure 3: Noise-free interpolated traces and difference from original data. Traces were inter-
polated with PEF smoothing on the left, without on the right. Known data is not shown, to
make the differences easier to see. The results are similar, but the result with smoothing is
better. sean1-smonosmo [ER]
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Figure 4: Noisy interpolated traces and differences. Traces were interpolated with PEF
smoothing on the left, without on the right. Differences are more visible here on noisy data
than on noise-free data. Traces interpolated without PEF smoothing abruptly change from
coherent to incoherent along certain micropatch boundaries. sean1-smonosmo2 [ER]
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