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Coherent noise attenuation using Inverse Problems and
Prediction Error Filters

Antoine Guitton1

ABSTRACT

Two iterative methods that handle coherent noise effects during the inversion of 2-D
prestack data are tested. One method approximates the inverse covariance matrices with
PEFs, and the other introduces a coherent noise modeling operator in the objective func-
tion. This noise modeling operator is a PEF that has to be estimated before the inversion
from a noise model or directly from the data. These two methods lead to Independent,
Identically Distributed (IID) residual variables, thus guaranteeing a stable convergence of
the inversion schemes and permitting coherent noise filtering/separation.

INTRODUCTION

Preserving the amplitudes requires inverse theory when an operator is not unitary. Unfortu-
nately, seismic operators are usually not unitary. Seismic operators can be regarded as the
adjoint of forward “modeling” operators (Claerbout, 1992). Lailly (1983) was the first to rec-
ognize that the standard migration operator is the adjoint to the corresponding forward operator
and used it in the first iteration of full waveform inversion (Tarantola, 1987). Because the ad-
joint is not the inverse of the operator, the amplitude of the input data is not preserved. An
approximate inverse can be computed using least-squares inversion. Thorson (1984) replaces
the standard hyperbolic Radon transform with a linear, least-squares inversion of the velocity
stack equations. However, the least-squares operator involves the computing of the inverse of
the Hessian that is often very difficult to derive. Forgues and Lambare (1997) and Chavent
and Plessix (1999) calculated an approximate inverse of the Hessian matrix associated with
the migration operator. When the calculation of the least-squares inverse is not feasible (size
of the matrices, use of operators instead of matrices), an iterative scheme is preferred.

However, with a least-squares inversion, major difficulties arise when the data are contam-
inated by noisy events. By noisy event I mean

Abnormally large or small data components, or outliers, where long-tailed probability
density functions (pdf) should be used as opposed to short-tailed Gaussian pdf.

Coherent noise that the seismic operator is unable to model (for example, a hyperbolic
Radon transform can’t properly model ellipses).
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The noise will (1) spoil any analysis based on the result of the inversion and (2) affect the
amplitude recovery of the input data. From a more statistical point of view, the residual,
which measures the quality of the data fitting, will be corrupted by high amplitude (outliers
in the data) or highly correlated events (coherent noise in the data) that will attract much of
the solver’s efforts, thus degrading the model m. The first I in IID stands for Independent,
meaning that no coherent events are present in the residual (hyperbolas, ellipses, lines, etc.).
The second I and D stand for Identically Distributed, meaning that the residual components
have similar energy. For example, if seismic data have not been multiplied by t2 to correct
for spherical divergence effects, the variables in the gather will not be Identically Distributed
(Figure 1). A possible solution to one particular noise problem is to attribute long-tailed pdfs

Figure 1: Left: the data have not been multiplied by t2 thus giving non Identically Distributed
variables. Right: after t2 correction, the data are Identically Distributed. antoine1-iid [ER]

to the residual variables. This long-tailed pdfs lead to the minimization of the l1 norm of the
data residual

f (m) Hm d 1, (1)

where H is the seismic operator, m the model and d the input seismic data. Because the l1

norm is less sensitive to outliers, it will give a better fitting of the data (Claerbout and Muir,
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1973). The minimization of such objective functions is a cumbersome problem because the
l1 norm is not differentiable everywhere. However, some alternatives exist if we use a hybrid
l1 l2 norm such as the Huber norm (Huber, 1973; Guitton and Symes, 1999) or an Iteratively
Reweighted Least Squares (IRLS) algorithm (Nichols, 1994; Bube and Langan, 1997) with
an appropriate weighting function. These methods have proved efficient (Guitton, 2000a).
The use of long-tailed pdfs is particularly effective at attenuating outliers. However, they are
usually not effective at attenuating coherent noise because it is not generally distinguishable
by its histogram, but by its moveout patterns. In addition, hybrid solvers are either difficult to
tune or expensive to use.

What will I do?

The two proposed methods are based on the need to have IID residual components. A typical
inverse problem arises when we want to minimize the objective function for the fitting goal

0 Hm d, (2)

where m is a mapping of the data (unknown of the inverse problem), H an operator and d the
seismic data. The residual r is defined as the difference between input data d and estimated
data d̃ Hm,

r d̃ d.

My research is focused on the attenuation/separation of the coherent noise only. The first
strategy relates to fundamentals in inverse theory as detailed in the General Discrete Inverse
Problem (Tarantola, 1987) and approximates the inverse covariance matrices with PEFs. The
second strategy proposes to introduce a coherent noise modeling part in Equation 2. The noise
operator will be a PEF. In the first strategy the coherent noise is filtered. In the second strat-
egy the coherent noise is subtracted from the signal. The two methods should (1) give IID
residual components, (2) stabilize the inversion, and (3) preserve the “real” events amplitudes
as long as the noise and the signal operators have been carefully chosen.

Why two methods?

The two methods achieve the same goal, but each has its own pros and cons. I will show
that the filtering method is easier to implement: the PEF estimation can be done iteratively
directly from the residual as the iterations go on. In contrast, for the subtraction method, the
coherent noise operator (a PEF) should be pre-estimated and kept constant as the iterations
go on. This a priori information can be sometimes rather difficult to have. The convergence
of the subtraction scheme is far better than the convergence of the filtering method, however.
Ideally, the nature of the coherent noise should guide us in this choice.
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THE INVERSE PROBLEM

In seismic processing we often transform data into equivalent data using linear operators.
Among these operators, we have the Fourier transform, the Radon transform, the migration
operator etc. Some of these operators are unitary (Fourier transform), meaning that the input
data are perfectly recoverable using the adjoint. Mathematically speaking, unitarity implies

HTH I, (3)

where H is the operator, HT the adjoint, and I the identity matrix. Unfortunately, most of the
operators are not unitary, meaning that one can’t go back and forth between the model m and
the data d without losing information or resolution. Mathematically speaking, non-unitarity
implies

HTH I. (4)

This loss of information can be overcome using inverse theory. The goal of inverse theory is
to find a model m that optimally represents the input data d given an operator H and given a
definition of optimality (minimum energy residual-l2 for example):

f (m) Hm d 2. (5)

The classical approach: least-squares criterion

The least-squares criterion comes directly from the hypothesis that the pdf of each observable
data and each model parameter is Gaussian. These assumptions lead to the General Discrete
Inverse Problem (Tarantola, 1987). Finding m is then equivalent to minimizing the quadratic
function (or objective function)

f (m) (Hm d)TC 1
d (Hm d) (m mprior)TC 1

m (m mprior), (6)

where Cd and Cm are the covariance operators, and mprior a model given a priori. The
covariance matrix Cd combines experimental errors and modeling uncertainties. Modeling
uncertainties describe the difference between what the operator can predict and the data. Thus
the covariance matrix Cd is often called the noise covariance matrix. Assuming (1) uniform
variance of the model and of the noise, (2) covariance matrices are diagonal , i.e., uncorrelated
model an data components, and (3) no prior model mprior, the objective function becomes

f (m) (Hm d)T(Hm d) 2mTm, (7)

where is a function of the noise and model variances. The previous assumptions leading to
Equation 7 are quite strong when we are dealing with seismic data because the variance of the
noise/model may be not uniform and the components of the noise/model are not independent.
Minimizing the objective function in Equation 7 is equivalent to having the two fitting goals
for m

0 Hm d (8)

0 Im. (9)
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The first inequality expresses the need for the operator H to fit the input data d. The second
inequality is often called the regularization (or model styling) term. The minimization of
Equation 8, when the operator H is linear, may be done using any kind of linear method
such as the steepest descent algorithm or faster conjugate gradients/directions methods (Paige
and Saunders, 1982). From now on, I will refer to Equation 8 as the “simplest” approach.
When the assumptions leading to Equation 8 are respected, the convergence towards m is easy
to achieve. In particular, the components of the residual r Hm d become IID. This IID
property implies that no coherent information is left in the residual and that each variable of
the residual has similar intensity (or power). The main factor that may alter this property is
the presence of noise in the data that violates assumptions about both the uniform distribution
and the need of independent noise components.

PROPOSED SOLUTIONS TO ATTENUATE COHERENT NOISE

Any dataset may be regarded as the sum of signal and noise

d s n.

I assume that the coherent noise n is made of the inconsistent part (or modeling uncertainties
part) of the data d for any given operator H. My goal is to define new strategies that would
lower the influence of the noise n, giving IID residual components.

METHOD 1: A filtering method

Equation 6 introduces two matrices that are difficult to compute: the data covariance matrix Cd

and the model covariance matrix Cm. I concentrate my efforts on the data covariance matrix
only, the computation of the model covariance matrix being beyond the scope of this paper.
When coherent noise is present in the data, residual variables are no longer IID and the covari-
ance matrices should not be approximated by diagonal operators. IID residual components is
equivalent to having a residual with a white spectrum. Thus coherent noise will add “color” to
the spectrum of the residual. The goal of the covariance matrices is to absorb this spectrum.
As Jon Claerbout (1999) asserts:

Clearly, the noise spectrum is the same as the data covariance only if we accept the
theoritician’s definition that E(d)=Fm. There is no ambiguity and no argument if
we drop the word “variance” and use the word “spectrum”.

This statement is the basis of the first filtering method. It says that the experimental residuals
(squared) should be weighted inversely by their multivariate spectrum for optimal conver-
gence. Because a PEF whitens data from which it was estimated, it approximates the inverse
power spectrum of the data. Thus a PEF (squared) estimated from the residual or the model
accomplishes the role of the inverse covariance matrices C 1

d and C 1
m in Equation 6. The

fitting goals in Equation 8 become, omitting the regularization term,

0 Ar(Hm d), (10)
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where Ar is a PEF estimated from the residual and Am from the unknown model. Thanks to
the Helical boundary conditions (Claerbout, 1998), the PEF may be computed in more than
one dimension (2-D, 3-D). This gives us a lot of flexibility to calculate the residual spectrum.
An important task is to develop a strategy to estimate the residual PEF Ar. I propose the
following algorithm:

Algorithm 1

1. Compute the current residual r = Hm - d.

2. Estimate a PEF Ar from the residual.

3. Minimize the objective function (l2 norm)

f (m) (Hm d)TAT
r Ar(Hm d), (11)

4. Go to 1 after a certain number of iterations in step (3).

Notice that the first PEF is estimated from the data (if no prior coherent noise model exists).
Then the residual PEF is re-estimated iteratively. This optimization scheme is very similar to
IRLS algorithms where weighting functions are re-computed after a certain number of itera-
tions. Because I re-compute the PEF iteratively, my goal is to have the best estimate of the
residual’s multivariate spectrum. This problem is then piece-wise linear. With this strategy,
the residual should be IID. Notice that the minimization of the objective function can be done
with our favorite fast conjugate gradients method.

METHOD 2: A subtraction method

Instead of removing the noise by filtering, we can remove it by subtraction. If an operator is
unable to model all the information embedded in the data, then the residual is not IID. The
second formulation I propose is based on the idea that if we can model the coherent noise with
another operator, then the residual components become IID. Let us consider that we have

d s n

and that there exists an operator L such that

L [H Ln].

We assume that H is the modeling operator for the signal s and that Ln is the modeling operator
for the coherent noise n. Following this decomposition, we can write

m
ms

mn

where mn is the noise-model and ms is the signal-model. Starting from

0 Lm d, (12)
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the fitting goal then becomes

0 Hms Lnmn d. (13)

Because we have to find ms and mn, this system is clearly under-determined and some regu-
larization is needed. Thus, we end up with the following fitting goals

0 Hms Lnmn d

0 Ims

0 Imn.

Because there should be a different operator Ln for each different coherent noise pattern, the
cost of this method increases considerably. Fortunately, we can use multi-dimensional PEFs to
estimate the coherent noise operator. This estimation is possible if we assume that the coherent
noise is predictable, i.e., made up of the superposition of local plane wave segments (Claer-
bout, 1992). If we can estimate PEFs from the coherent noise, then the inverse PEF should be
our coherent noise modeling operator Ln A 1

n . Computing the inverse of multi-dimensional
PEFs is now possible via the helix. In addition, with the helical boundary conditions, comput-
ing the inverse of multi-dimensional PEFs is as easy as computing the inverse of 1-D filters.
We have then

0 Hms A 1
n mn d

0 Ims (14)

0 Imn,

where An is the noise PEF. This approach is similar to Tamas Nemeth’s approach (1996). The
difference emerges in the choice of the operators Ln and H. Whereas Nemeth (1996) imposes
one operator Ln to model the noise, we estimate a PEF An and use it in the fitting goals
(Equation 14). Because PEFs (with appropriate dimensions) whiten the spectrum of many
different plane-waves, this strategy is more flexible (no assumptions regarding the moveout of
the noise). This method should give IID residual variables as long as we are able to estimate
PEFs for the coherent noise. This is the main difficulty and challenge of this method. The
minimization of the objective function in a least-squares sense for the fitting goals in Equation
14 can be done again with a fast conjugate gradients method.

I did not develop any specific algorithm to solve this inverse problem. I assume that we
have a strategy that allows us to estimate the operator An. We can then minimize the objective
function for the fitting goals given in Equation 14 in a least-squares sense, for example.

RESULTS

In this section I show some preliminary results from testing the two proposed strategies. The
main operator H is the hyperbola superposition operator. The adjoint HT is the hyperbolic
Radon transform (Nichols, 1994; Guitton, 2000b). The model space m is called the velocity
space. The input data d are CMP gathers. The process of computing the model m minimizing
Equation 11 is called velocity inversion.
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Filtering method

The following results illustrate the first strategy. The left panel of Figure 2 displays the input
CMP gather for the velocity inversion. These data have been pre-whitened with a 1-D PEF
(deconvolution). Notice that this CMP is made up of nearly horizontal events, hyperbolas and
a slow velocity, low frequency event crossing the gather. The later is the coherent noise we
want to get rid of. I iterated 30 times to obtain the final model m (Figure 6). The residual PEF
is 2-D with 25 coefficients on the time axis and 2 coefficients on the space axis. This PEF is
re-estimated every ten iterations (see algorithm 1).

In Figure 2, I compare the input data with the remodeled data (d̃ Hm) after least-squares
inversion with (Equation 10) and without PEF (Equation 8). Notice how close the two results
are (the velocity of the linear event is not scanned in the velocity inversion). Figure 3 shows
a comparison of the residuals (r d̃ d). As expected, the residual of the least-squares in-
version with PEF estimation gives a white residual (right panel) as opposed to the “simplest”
inversion residual contaminated with the linear noise (left panel). Notice that the use of the
helical boundary conditions for the PEF estimation has left its footprint on the edges of the
residual panel. Figure 4 displays the two spectra for the two residuals.

A comparison of the two model space (Figure 6) shows that (1) both results are difficult
to interpret and (2) the inversion scheme with PEF gives a more satisfying panel. As a more
striking comparison, Figure 8 shows the output of the least-squares inversion with or without
PEF as a function of the number of iterations. After 100 iterations, the “simplest” inversion
(Equation 8) gives a velocity panel infested with artifacts, for it tries to fit the linear event left in
the residual. In contrast, with the proposed scheme, the change in the number of iteration does
not affect the final result: the inversion becomes stable. Figure 7 displays the convolution
of one of the inverse PEF estimated during the iterations with a panel of white noise. It
demonstrates that the PEF is effectively after the linear event we want to attenuate.

Subtraction method

Now we have the fitting goals in Equation 14. For the time being, I drop the two regularization
terms in Equations 14 and focus my analysis on the data fitting part. For the noise modeling
operator An, I computed a 2-D PEF directly from the data (which gives a very approximate
coherent noise PEF). The size of this PEF is 25 2. The convolution of the inverse PEF with a
panel filled with white noise is shown in Figure 10. It shows that the PEF predicts both signal
(thin lines) and coherent noise (linear event) that will cause crosstalks with the hyperbolic
Radon operator. This PEF or coherent noise operator is kept constant during the iterations. I
iterated 30 times. Figure 9 displays the model space ms on the left, the modeled noise in the
middle (A 1

n mn), and the residual on the right. As expected, because the PEF is not a perfect
coherent noise operator, some signal is trapped in the linear event (middle, Figure 9). Figure
5 shows the spectrum of the residual with the “simplest” inversion along with the spectrum of
the residual for the subtraction scheme.

After 100 iterations of the subtraction scheme, we see (Figure 12) that the model space
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does not vary too much, as opposed to the “simplest” approach (Equation 8). This method is
stable with respect to the number of iterations.

Comparison study

Figure 11 compares the convergence of the filtering, subtraction and “simplest” methods.
The subtraction scheme converges significantly better than the two other schemes. Figure
13 displays the three velocity panels corresponding to each approach (30 iterations). The two
proposed methods increase the resolution of the velocity space compared to the “simplest”
scheme. The table below intends to summarize some practical issues for each strategy when
coherent noise is present in the input data:

PEF Regularization Stability
Methods Convergence estimation needed ? Residual (iterations)

Filtering Slow Easy Not all the time IID Stable
Subtraction Fast Difficult Yes IID Stable
Simplest Slow NA Not all the time not IID Unstable

The “PEF estimation” columns relates to the difficulty of estimating the residual PEF in Equa-
tion 10 and the coherent noise PEF in Equation 14.

DISCUSSION

1. In the filtering method, PEFs are recomputed iteratively from the data residual. I think
this solution is the method of choice since the PEF (squared) is the inverse noise co-
variance matrix C 1

d . For the subtraction method, however, the final result is driven by
the orthogonality between the coherent noise operator and the signal operator (Nemeth,
1996). If the two operators can model similar parts of the data, the separation will not be
efficient. Nemeth proposes introducing some regularization (Equation 14) to mitigate
this difficulty. We could perhaps compute a prior coherent noise model from which we
estimate the PEFs. This approach is related to Spitz’s idea (Spitz, 1999), according to
which a noise model is utilized to estimate the signal PEF. In any case, the strategy of
computing the coherent noise operator (PEF) is of a vital importance for the quality of
noise separation.

2. The PEF estimation is one problem, but choosing the signal operator H is another. As
said before, the two approaches perform noise attenuation (filtering method) or noise
separation (subtraction method) along with a conventional signal processing step (veloc-
ity analysis here). The processing step should be chosen in agreement with the expected
signal in the data. Basically, the processing operator H should mitigate the crosstalks
between the signal and the coherent noise. Coherent noise comes in different flavors
and H should reflect this heterogeneity. Harlan (1986) gives some guidelines alternat-
ing between migration, Slant-Stack, and offset-local Stack as a function of the coherent
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noise and of the signal. We should keep these guidelines in mind when dealing with
different datasets, different problems.

3. Because the data are not time-stationary, the coherent noise operator should be a func-
tion of time and space. This difficulty can be overcome using non-stationary filters.
In particular, estimating space varying filters with coefficients smoothed along a ra-
dial direction proved efficient (Crawley, 1999). Nonetheless, Clapp and Brown (2000)
experienced stability problems, making the computing of the inverse PEFs potentially
unsafe.

4. The two proposed methods have the advantage of performing noise attenuation (filter-
ing method) or noise separation (subtraction method) along with a geophysical process
(velocity inversion in this case). The two algorithms can be used at the same time. The
fitting goals become

0 Ar(Hms A 1
n mn d) (15)

0 Amsms

0 Amnmn.

Ar, Ams , Amn and An are PEFs to be estimated. Note that if (1) Hms s (the sig-
nal), (2) A 1

n mn n (the coherent noise), (3) Amn Ar N (the coherent noise PEF),
(4) Amsms Ss (S the signal PEF) and (5) Amnmn Nn, then Equation 15 is exactly
Abma’s Equation (1995). Equation 15 gives a simple generalization of the methods
proposed above and should be tested.

5. A more general robust inversion scheme can be derived combining the two proposed
methods along with a robust norm. In particular, it would be interesting to use the
hybrid l2 l1 Huber norm more routinely. Thus we would solve the noise problem in
its totality, handling both outliers and coherent noise effects at the same time.

6. The extension to 3-D data should be feasible. A problem arises in the choice of the
operators and in the PEF estimation. For this method to be really efficient in 3-D, more
3-D operators should be used. The PEF’s estimation in 3-D is theoretically a simple
extension of the 1-D case. The shape of the PEF may be more difficult to anticipate,
however. In addition, the irregular geometry, intrinsic to 3-D acquisitions, can make the
estimation of the PEF very difficult.

CONCLUSION

The two methods introduced in this paper have proved efficient. The goal is attained since the
residual has IID components. This property of the residual insures a stable convergence of the
iterative scheme along with the filtering/subtraction of the coherent noise present in the data.
The next “natural step” would be to test these methods first on a complete 2-D line and then
on 3-D data if the 2-D experiment is conclusive enough.



SEP–105 Coherent noise attenuation 11

AKNOWLEDGMENTS

I would like to thank Jon Claerbout for insightful discussions. Thanks also to Biondo Biondi
for suggesting some improvements to this paper.

REFERENCES

Abma, R., 1995, Least-squares separation of signal and noise with multidimensional filters:
Ph.D. thesis, Stanford University.

Bube, K. P., and Langan, R. T., 1997, Hybrid l1/l2 minimization with applications to tomog-
raphy: Geophysics, 62, no. 04, 1183–1195.

Chavent, G., and Plessix, R., 1999, An optimal true-amplitude least-squares prestack depth-
migration operator: Geophysics, 64, no. 2, 508–515.

Claerbout, J. F., and Fomel, S., 1999, Geophysical Estimation with Example: Class notes,
http://sepwww.stanford.edu/sep/prof/index.html.

Claerbout, J. F., and Muir, F., 1973, Robust modeling with erratic data: Geophysics, 38, 820–
844.

Claerbout, J. F., 1992, Earth Soundings Analysis, Processing versus Inversion: Blackwell
Scientific Publication.

Claerbout, J., 1998, Multidimensional recursive filters via a helix: Geophysics, 63, no. 05,
1532–1541.

Clapp, R. G., and Brown, M., 2000, (t x) domain, pattern-based multiple separation: SEP–
103, 201–210.

Crawley, S., 1999, Interpolation with smoothly nonstationary prediction-error filters: SEP–
100, 181–196.

Forgues, E., and Lambare, G., 1997, Resolution of multi-parameter ray+borne inversion: 61st
Mtg. Eur. Assoc. Expl Geophys, Extended Abstracts, Session:P115.

Guitton, A., and Symes, W. W., 1999, Robust and stable velocity analysis using the Huber
function: 69th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1166–
1169.

Guitton, A., 2000a, Huber solver versus IRLS algorithm for quasi L1 inversion: SEP–103,
255–271.

Guitton, A., 2000b, Prestack multiple attenuation using the hyperbolic Radon transform: SEP–
103, 181–201.



12 Guitton SEP–105

Harlan, W. S., 1986, Signal-noise separation and seismic inversion: Ph.D. thesis, Stanford
University.

Huber, P. J., 1973, Robust regression: Asymptotics, conjectures, and Monte Carlo: Ann.
Statist., 1, 799–821.

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations: Soc.
Indust. Appl. Math., Conference on inverse scattering, 206–220.

Nemeth, T., 1996, Imaging and filtering by Least-Squares migration: Ph.D. thesis, The uni-
versity of Utah.

Nichols, D., 1994, Velocity-stack inversion using Lp norms: SEP–82, 1–16.

Paige, C. C., and Saunders, M. A., 1982, LSQR: an algorithm for sparse linear equations and
sparse least squares: ACM Transactions on Mathematical Software, 61, 43–71.

Spitz, S., 1999, Pattern recognition, spatial predictability, and subtraction of multiple events:
The Leading Edge, 18, 55–58.

Tarantola, A., 1987, Inverse Problem Theory: Elsevier Science Publisher.

Thorson, J. R., 1984, Velocity stack and slant stack inversion methods: Ph.D. thesis, Stanford
University.



SEP–105 Coherent noise attenuation 13

Figure 2: Filtering method. Input (left) and remodeled data after inversion. The maxi-
mum offset is 2.2km. Middle: fitting goal of Equation 8. Right: fitting goal of Equation 10
antoine1-compdatF [ER]
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Figure 3: Filtering method. Residuals r d̃ d after inversion. antoine1-compresF [ER]
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Figure 4: Filtering method. Spectrum of the “simplest” inversion residual with (left) and
without PEF (right). antoine1-compsepcresF [ER]

Figure 5: Subtraction method. Spectrum of the “simplest” inversion residual (left) and of the
subtraction scheme residual (right). antoine1-compspecS [ER]
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Figure 6: Filtering method. Velocity domain antoine1-compmodF [ER]
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Figure 7: Filtering method. Convo-
lution of noise with one of the inverse
PEF estimated during the iterations.
The coherent noise appears (dipping
events). antoine1-impulseF [ER]
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Figure 8: Filtering method. Stability of the filtering scheme (the two right panels) as opposed
to the stability of the “simplest” approach (the two left panels) to the number of iterations.
antoine1-compstabmod [ER]
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Figure 9: Subtraction method. Left: Model Space ms. Middle: Modeled noise A 1
n mn.

Some signal is trapped in the coherent noise due to crosstalks between H and the coherent
noise PEF An. Right: Data residual r d̃ d. antoine1-compevS [ER]
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Figure 10: Subtraction method.
Convolution of noise with the in-
verse PEF estimated from the data
and used as the coherent noise
PEF. Notice that both signal (straight
lines) and noise (dipping events)
are predictable, causing crosstalks
with the hyperbolic Radon transform.
antoine1-impulseS [ER]

Figure 11: Convergence of the
two proposed methods along with
the convergence of the “simplest”
scheme. antoine1-compiterS [ER]
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Figure 12: Subtraction method. Stability of the subtraction scheme (the two right panels)
as opposed to the stability of the “simplest” approach (the two left panels) to the number of
iterations. antoine1-compstabmodSub [ER]
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Figure 13: Comparison study. The two proposed schemes give a better velocity panel than
the “simplest” inversion. antoine1-compmod [ER]



216 SEP–105


