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Short Note

Simple factorization of implicit finite-difference downward-
continuation operators

Biondo Biondi1

INTRODUCTION

Solving the one-way wave equation by using implicit finite-differences on helical boundary
conditions is a computationally attractive way to avoid the operator anisotropy induced by
splitting (Rickett et al., 1998; Rickett, 2000). The method relies on a numerical spectral fac-
torization of a finite-difference operator into the product of two operators: one minimum phase
and the other maximum phase. When the velocity is laterally constant this factorization can
be efficiently and reliably performed in the Fourier domain using the Kolmogoroff method
(Claerbout, 1976). Unfortunately, when the velocity is laterally varying the operator to be
factored is non-stationary, and Kolmogoroff cannot be directly applied. Rickett describes an
approximate method to address this problem (2000), but unfortunately when the velocity field
is rapidly changing instability may incur.

I attempt to circumvent the problems of factoring a non-stationary operator by analytical
approximating the finite-difference operator as the cascade of operators that are either causal
or anti-causal. The application of such one-sided operators by implicit finite-difference (e.g.
Crank-Nicolson) requires only the inversion of triangular matrices, which is quickly accom-
plished by back substitution (i.e. polynomial division).

I am interested to achieve wide-angle accuracy, thus I concentrate my attention on the
finite-difference step of the Fourier-Finite Difference Plus Interpolation (FFDPI) method that
I previously presented (2000), which, in turn, is based on the Fourier-Finite Difference (FFD)
method introduced by Ristow and Ruhl (1994).

The FFDPI correction term can be written in matrix notation as

exp( kz) exp
D D

I D D
, (1)

where and are diagonal matrices function of the reference velocity and the true medium
velocity, and D D is a discrete approximation of the Laplacian. The goal is to approximate

kz as the sum of terms that are function of only either D or D . Since kz is an exponent, the
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approximation by a sum is equivalent to applying the corresponding implicit finite-difference
operators in a cascade.

If we consider the simplest case of a two terms approximation we have

kz kz D kz (D) . (2)

The above sum would not require any approximation if D were symmetric; that is, its Fourier-
domain representation were purely real. However, such factorization of the Laplacian would
not be useful for our purposes, because it would not generate a triangular linear system when
applied to an implicit finite-difference scheme.

Zhang et al. (2000) use a cascade similar to equation (2) together with helical bound-
ary conditions to derive an efficient implicit finite-difference method that solves the two-
dimensional one-way wave equation along the Cartesian axes and the diagonals. My goal
is to employ the cascade in equation (2) together with helical boundary conditions to solve
directly the three-dimensional problem, in a way similar to Rickett et al (1998). However, this
note is limited to the analysis of the inaccuracies introduced by the factorization when solving
the two-dimensional one-way wave equation.

TWO SIMPLE APPROXIMATIONS

I will consider the following two simple approximations:

kz
D

2 I D

D

2(I D )
(3)

and

kz
D

2 I D

D

2(I D )
. (4)

If the coefficients of and are constant; i.e., the reference velocity and the medium
velocity are laterally invariant, the analysis can be performed in the wavenumber domain (k).
In the following, I will assume that the operators are in the wavenumber-domain. It is straight-
forward to verify that

kz kz if (D) 0. (5)

However, as discussed above, we want to use minimum-phase approximations of D. Minimum
phase functions are by definition one sided, and thus the imaginary part of their wavenumber-
domain representation must be different from zero. When this occurs, both a phase error

kz kz and an amplitude error kz are introduced. The amplitude error is par-
ticularly troubling because it may cause either instability or excessive dumping of the propa-
gating waves, depending on the sign of kz .
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Figure 1: First-order approximation of the one-dimensional gradient operator. Notice that this
operator is also minimum phase. Space-domain representation (top), wavenumber-domain
representation (bottom). biondo1-rep1 [CR]

In contrast, it is also easy to verify that

kz ( kz) 0 if D (k) D ( k) ; (6)

that is, if the space-domain representation of D is purely real. This property of equation (4) is
attractive because it means that the all-pass properties of exp( kz) are preserved.

The analytical expressions of the errors introduced by the above approximations are not
particularly insightful. Therefore, I will show the errors introduced by the approximations for
some concrete instances of both D and the velocities. In particular, I will show the effective
phase curves corresponding to the use of each approximation and compare them with the
phase curves corresponding to the application of the exact FFD correction [equation (1)], and
the application of a simple split-step correction.

I start by using for D the first-order approximation of the derivative operator. Figure 1
shows the space-domain representation (top), and the wavenumber-domain representation
(bottom), of D. Notice that D (D) 0. D is also minimum phase.

Figure 2 shows the phase curves plotted as a function of the propagation angle. The ap-
proximate FFD curves correspond to the approximation of equation (3). The phase curves
were computed assuming a medium velocity of 2 km/s, a low reference velocity of 1.7 km/s, a
high reference velocity of 2.3 km/s, a spatial sampling rate of 10 m, and a temporal frequency
of 25 Hz. Figure 3 shows the phase curves computed with the same parameters as in Figure 2,
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with the exception of the temporal frequency, that was set to 100 Hz. The phase curves are
affected by the temporal frequency for two reasons: first, (D) is function of the wavenumber
(bottom of Figure 1); second, the higher the temporal frequency, the worse D D approximates
the Laplacian, affecting the accuracy of the “exact” FFD correction. The frequency of 100 Hz
corresponds to the Nyquist wavenumber for the waves propagating at 90 degrees with velocity
of 2 km/s. From Figure 2 we can immediately conclude that kz is a poor approximation at
low frequencies, even worse than the simple split-step correction. The curves corresponding to

kz and kz get closer at higher frequencies, but mostly because kz becomes more ineffec-
tive. The phase errors for kz are sufficiently discouraging that I do not show the amplitude
curves; that are related to the imaginary part of kz .

In contrast, the approximation of equation (4) is more promising, not only because of
its lack of stability problems [equation (6)], but because the phase errors are better behaved.
Figures 4 and 5 show the phase curves corresponding to kz . At low frequency (25 Hz) the
approximate FFD correction is worse than the exact one, but is better then the simple split-step
correction (Figure 2). At high frequency (100 Hz), the approximate FFD correction is very
close to the exact one (Figure 5).

The final goal is to solve the 3-D one-wave equation, not the 2-D one. The 2-D Laplacian
cannot be as easily factored analytically as the 1-D one, and thus I would need to rely to nu-
merical methods to find appropriate expressions for D. In particular, I would need to apply
Kolmogoroff factorization. Figures 6 and 7 show the step of such procedure for the 1-D case.
Figure 6 shows the zero-phase first derivative operator obtained by inverse Fourier transform-
ing D (k) k . Figure 7 shows the result of Kolmogoroff applied to the operator in Figure 6.
Notice the similarity with the operator shown in Figure 1. The small wiggles following the
large negative spike in the space-domain representation shown in Figure 7 are responsible for
the difference in behavior at high wavenumbers. The phase curves for this choice of D are
shown in Figures 8 and 9. They are very similar to the ones shown in Figures 4 and 5, with
the exception of the curves corresponding to the “exact” FFD correction. Because the new
D is a better approximation of the derivative operator also for high wavenumber, the curves
corresponding to 100 Hz are almost identical to the ones corresponding to 25 Hz.

CONCLUSIONS

The problems encountered when factoring a non-stationary operator for applying the FFD
correction with laterally varying velocity can be circumvented by approximating the exact
FFD correction as the sum of terms that contains either causal or anti-causal operators.

The first approximation that I considered is unattractive both because of its phase errors
and because of its potential for instability. The second approximation that I analyzed has
the desired amplitude behavior and better phase properties than the first one. However, its
usefulness is still undetermined by the results obtained so far. The errors introduced by these
approximations should be weighted against the errors introduced by splitting, also taking into
account that the splitting errors are greatly reduced in the FFDPI algorithm (Biondi, 2000),
with respect to the simple FFD algorithm.
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Figure 2: Phase curves obtained using the D operator shown in Figure 1, and for a temporal
frequency of 25 Hz. The phase curves for the approximate FFD correction were computed
using the approximation in equation (3). biondo1-firsta1f25 [CR]
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Figure 3: Phase curves obtained using the D operator shown in Figure 1, and for a temporal
frequency of 100 Hz. The phase curves for the approximate FFD correction were computed
using the approximation in equation (3). biondo1-firsta1f100 [CR]
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Figure 4: Phase curves obtained using the D operator shown in Figure 1, and for a temporal
frequency of 25 Hz. The phase curves for the approximate FFD correction were computed
using the approximation in equation (4). biondo1-firsta2f25 [CR]
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Figure 5: Phase curves obtained using the D operator shown in Figure 1, and for a temporal
frequency of 100 Hz. The phase curves for the approximate FFD correction were computed
using the approximation in equation (4). biondo1-firsta2f100 [CR]
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Figure 6: Zero-phase version of the exact one-dimensional gradient operator. Space-domain
representation (top), wavenumber-domain representation (bottom). Notice that the imaginary
part of the wavenumber-domain representation is equal to zero. biondo1-rep2 [CR]
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Figure 7: Minimum-phase version of the exact one-dimensional gradient operator. Space-
domain representation (top), wavenumber-domain representation (bottom). Notice that
the imaginary part of the wavenumber-domain representation is different from zero.
biondo1-rep3 [CR]
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Figure 8: Phase curves obtained using the D operator shown in Figure 7, and for a temporal
frequency of 25 Hz. The phase curves for the approximate FFD correction were computed
using the approximation in equation (4). biondo1-dera2f25 [CR]
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Figure 9: Phase curves obtained using the D operator shown in Figure 7, and for a temporal
frequency of 100 Hz. The phase curves for the approximate FFD correction were computed
using the approximation in equation (4). biondo1-dera2f100 [CR]
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