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Short Note

Multiple realizations using standard inversion techniques

Robert G. Clapp1

INTRODUCTION

When solving a missing data problem, geophysicists and geostatisticians have very similar
strategies. Each use the known data to characterize the model’s covariance. At SEP we often
characterize the covariance through Prediction Error Filters (PEFs) (Claerbout, 1999). Geo-
statisticians build variograms from the known data to represent the model’s covariance (Isaaks
and Srivastava, 1989). Once each has some measure of the model covariance they attempt to
fill in the missing data. Here their goals slightly diverge. The geophysicist solves a global
estimation problem and attempts to create a model whose covariance is equivalent to the co-
variance of the known data. The geostatistician performs kriging, solving a series of local
estimation problem. Each model estimate is the linear combination of nearby data points that
best fits their predetermined covariance estimate. Both of these approaches are in some ways
exactly what we want: given a problem give me ‘the answer’.

The single solution approach however has a couple significant drawbacks. First, the so-
lution tends to have low spatial frequency. Second, it does not provide information on model
variability or provide error bars on our model estimate. Geostatisticians have these abilities
in their repertoire through what they refer to as ‘multiple realizations’ or ‘stochastic simula-
tions’. They introduce a random component, based on properties (such as variance) of the
data, to their estimation procedure. Each realization’s frequency content is more accurate and
by comparing and contrasting the equiprobable realizations, model variability can be assessed.

In this paper I present a method to achieve the same goal using a formulation that better
fits into geophysical techniques. I modify the model styling goal, replacing the zero vector
with a random vector. I show how the resulting models have a more pleasing texture and can
provide information on variability.

1email: bob@sep.stanford.edu
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MOTIVATION

Regularized linear least squares estimation problems can be written as minimizing the quadratic
function

Q(m) d Lm 2 2 Am 2 (1)

where d is our data, L is our modeling operator, A is our regularization operator and we are
inverting for a model m. Alternately, we can write them in terms of fitting goals,

d Lm (2)

0 Am,

For the purpose of this paper I will refer to the first goal as the data fitting goal and the
second as the model styling goal. Normally we think of data fitting goal as describing the
physics of the problem. The model styling goal is suppose to provide information about the
model character. Ideally A should be the inverse model covariance. In practice we don’t have
the model covariance so we attempt to approximate it through another operator. At SEP the
regularization operator is typically one of the following:

Laplacian or gradient a simple operator that assumes nothing about the model

Prediction Error Filter (PEF) a stationary operator estimated from known portions of the
model or some field with the same properties as the model (Claerbout, 1999)

steering filter a non-stationary operator built from minimal information about the model
(Clapp et al., 1997)

non-stationary PEF a non-stationary operator built from a field with the same properties as
the model (Crawley, 2000).

A problem with the first three operators is that while they approximate the model covariance,
they have little concept of model variance. As a result our model estimates tend to have the
wrong statistical properties.

MISSING DATA

The missing data problem is probably the simplest to understand and interpret results. We
begin by binning our data onto a regular mesh. For L in fitting goals (2) we will use a selector
matrix J, which is ‘1’ at locations where we have data and ‘0’ at unknown locations. As an
example, let’s try to interpolate a day’s worth of data collected by SeaBeam (Figure 1), which
measures water depth under and to the side of a ship (Claerbout, 1999). Figure 2 shows the
result of estimating a PEF from the known data locations and then using it to interpolate the
entire mesh. Note how the solution has a lower spatial frequency as we move away from the
recorded data. In addition, the original tracks of the ship are still clearly visible.
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Figure 1: Depth of the ocean under
ship tracks. bob3-sea.init [ER]

Figure 2: Result of using a PEF to in-
terpolate Figure 1, taken from GEE
(Claerbout, 1999). bob3-sea.pef
[ER,M]
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If we look at a histograms of the known data and our estimated data we can see the effect
of the PEF. The histogram of the known data has a nice Gaussian shape. The predicted data
is much less Gaussian with a much lower variance. We want estimated data to have the same
statistical properties as the known data (for a Gaussian distribution this means matching the
mean and variance).

Figure 3: Histogram for the known
data (solid lines) and the estimated
data (‘*’). Note the dissimilar shapes.
bob3-pef.histo [ER,M]

Geostatisticians are confronted with the same problem. They can produce smooth, low
frequency models through kriging, but must add a little twist to get model with the statistical
properties as the data. To understand how, a brief review of kriging is necessary. Kriging
estimates each model point by a linear combination of nearby data points. For simplicity lets
assume that the data has a standard normal distribution. The geostatistician find all of the
points m1....mn around the point they are trying to estimate m0. The vector distance between
all data points dij and each data point and the estimation point di0 are then computed. Using
the predefined covariance function estimate C , a covariance value is then extracted between
all known point pairs Ci j and between known points and estimation point Ci0 at the given
distances dij and di0 (Figure 4). They compute the weights ( 1... n) by solving the set of
equations implied by

C11 ... C1n 1
. ... . .
. ... . .
. ... . .

Cn1 ... Cnn 1
1 ... 1 0

1
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.

.

.
Cn0

1

. (3)

Estimating m0 is then simply,

m0

n

i 1

imi . (4)
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To guarantee that the matrix in equation (3) is invertible geostatisticians approximate the co-
variance function through a linear combination of a limited set of functions that guarantee that
the matrix in equation (3) is positive-definite and therefore invertible. The smooth models

02

3

1

0,3

2,3

0,1

1,3

0,2

1,2

Covariance

2,2

Figure 4: Definition of the terms in equation (3). A vector is drawn between two points. The
covariance at the angle and distance describing the vector is then selected. bob3-covar-def
[NR]

provided by kriging often prove to be poor representations of earth properties. A classic ex-
ample is fluid flow where kriged models tend to give inaccurate predictions. The geostatistical
solution is to perform Gaussian stochastic simulation, rather than kriging, to estimate the field
(Deutsch and Journel, 1992). There are two major differences between kriging and simulation.
The primary difference is that a random component is introduced into the estimation process.
Stochastic simulation, or sequential Gaussian simulation, begins with a random point being
selected in the model space. They then perform kriging, obtaining a kriged value m0 and a
kriging variance k . Instead of using m0 for the model value we select a random number
from a normal distribution. We use as our model point estimate mi ,

mi m0 k . (5)

We then select a new point in the model space and repeat the procedure. To preserve spatial
variability, a second change is made: all the previously estimated points are treated as ‘data’
when estimating new points guaranteeing that the model matches the covariance estimate.
By selecting different random numbers (and/or visiting model points in a different order) we
will get a different, equiprobable model estimate. The advantage of the models estimated
through simulation is that they have not only the covariance of they data, but also the variance.
As a result the models estimated by simulation give more realistic fluid flow measurements
compared to a kriged model. In addition, by trying different realizations fluid flow variability
can be assessed.
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The difference between kriging and simulation has a corollary in our least squares estima-
tion problem. To see how let’s write our fitting goals in a slightly different format,

rd d Jm

rm Am, (6)

where rd is our data residual and rm is our model residual. The model residual is the result of
applying our covariance estimate A to our model estimate. The larger the value of a given rm,
the less that model point makes sense with its surrounding points, given our idea of covariance.
This is similar to kriging variance. It follows that we might be able to obtain something similar
to the geostatistician’s simulations by rewriting our fitting goals as

d Jm

v Am, (7)

where v is a vector of random normal numbers and is a measure of our estimation un-
certainty2. By adjusting we can change the distribution of m. For example, let’s return
to the SeaBeam example. Figure 5 shows four different model estimations using a normal
distribution and various values for the variance. Note how the texture of the model changes
significantly. If we look at a histogram of the various realizations (Figure 6), we see that the
correct distribution is somewhere between our second and third realization.

We can get an estimate of , or in the case of the missing data problem , by applying
fitting goals (6). If we look at the variance of the model residual (mr) and (d) we can get a
good estimate of ,

(rm)

(d)
. (8)

Figure 7 shows eight different realizations with a random noise level calculated through
equation (8). Note how we have done a good job emulating the distribution of the known
data. Each image shows some similar features but also significant differences (especially note
within the ‘V’ portion of the known data).

A potentially attractive feature of setting up the problem in this manner is that it easy to
have both a space-varying covariance function (a steering filter or non-stationary PEF) along
with a non-stationary variance. Figure 8 shows the SeaBeam example again with the variance
increasing from left to right.

SUPER DIX

In general the operator L in fitting goals (7) is much more complex than the simple masking
operator used in the missing data problem. One of the most attractive potential uses for a

2For the missing data problem could be used exclusively. As our data fitting goal becomes more com-
plex, having a separate and becomes useful.
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Figure 5: Four different realizations with increasing in fitting goals (7). bob3-distrib
[ER,M]

Figure 6: Histogram of the known
data (solid line) and the four dif-
ferent realizations of Figure 5.
bob3-movie.distir [ER,M]
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Figure 7: Eight different realizations of the SeaBeam interpolation problem and their his-
tograms. Note how the realizations vary away from the known data points. bob3-sea.movie
[ER,M]
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Figure 8: Realization where the vari-
ance added to the image increases
from left to right. bob3-non-stat
[ER,M]

range of equiprobable models is in velocity estimation. As a result I decided to next test
the methodology on one of the simplest velocity estimation operators, the Dix equation (Dix,
1955).

Following the methodology of Clapp et al. (1998), I start from a CMP gather q(t , i ) move-
out corrected with velocity . A good starting guess for our RMS velocity function is the
maximum “instantaneous stack energy”,

stack(t , )
n

i 0

NMOv(q(t , i )). (9)

Not all times have reflections so we don’t weight each rms(t) equivalently. Instead we intro-
duce a diagonal weighting matrix, W, found from stack energy at each selected rms(t). Our
data fitting goal becomes

0 W [Cu d] . (10)

We are multiplying our RMS function by our time so must make a slight change in our
weighting function. To give early times approximately the same priority as later times, we
need to multiply our weighting function by the inverse,

W
W

. (11)

Next we need to add in regularization. I define a steering filter operator A that influences the
model to introduce velocity changes that follow structural dip. I replace the zero vector with a
random vector and precondition the problem (Fomel et al., 1997) to get

0 W (CA 1p d)

v p. (12)

To test the methodology I took a 2-D line from a 3-D North Sea dataset provided by
Unocal. Figure 9 shows four different realizations with varying levels of . I then chose
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Figure 9: Four different realization of fitting goals (12) with increasing levels of Gaussian
noise in v. bob3-scale.10.x2 [ER,M]
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what I considered a reasonable variability level, and constructed ten equiprobable models
(Figure 10). Note that the general shapes of the models are very similar. What we see are
smaller structural changes. For example, look at the range between .7s and 1.1s. Generally
each realization tries to put a high velocity layer in this region, but thickness and magnitude
varies in the different realizations.

Figure 10: Four of the ten different realization of fitting goals (12) with constant Gaussian
noise in v. bob3-dix-real [ER,M]

FUTURE WORK

In this paper I glossed over several problems. First, should be a space-varying function
rather than the constant I proposed. A bootstrap approach (using the model residual at one
non-linear iteration as our guess at a space-varying ) might prove effective but hasn’t been
tested. How to calculate for the non-missing data problem is an open question. In the
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generic geophysical operator L, we often don’t know which model components are estimated
through the data fitting goal and which are estimated by the model styling goal. Finally, I made
the assumption that I was dealing with models with a normal distribution. Whether replacing
v with another distribution or using something similar to the geostatistician’s normal-score
transform would be effective in correctly modeling these distributions is unknown.

CONCLUSIONS

I have demonstrated a new method for creating equiprobable realizations using standard geo-
physical inversion techniques. The character of resulting models is much more consistent than
models derived by standard techniques.
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