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Multi-dimensional Fourier transforms in the helical coordinate
system

James Rickett and Antoine Guitton1

ABSTRACT

For every two-dimensional system with helical boundary conditions, there is an isomor-
phic one-dimensional system. Therefore, the one-dimensional FFT of a 2-D function
wrapped on a helix is equivalent to a 2-D FFT. We show that the Fourier dual of he-
lical boundary conditions is helical boundary conditions but with axes transposed, and
we explicitly link the wavenumber vector, k, in a multi-dimensional system with the
wavenumber of a helical 1-D FFT, kh . We illustrated the concepts with an example of
multi-dimensional multiple prediction.

INTRODUCTION

If helical boundary conditions (Claerbout, 1998b) are imposed on a multi-dimensional system,
an isomorphism exists between that system and an equivalent one-dimensional system. Pre-
vious authors, for example Claerbout (1998a), take advantage of this isomorphism to perform
rapid multi-dimensional inverse filtering by recursion.

The Fourier analogue of convolution is multiplication: to convolve a 2-D signal with a
2-D filter, take their 2-D Fourier transforms, multiply them together and return to the original
domain. The relationship between 1-D and 2-D convolution, FFT’s and the helix is illustrated
in Figure 1. With helical boundary conditions, we can take advantage of the isomorphism
described above, and perform multi-dimensional convolutions by wrapping multi-dimensional
signals and filters onto a helix, taking their 1-D FFT’s, multiplying them together, and then
returning to the original domain.

If we can use 1-D FFT’s to do 2-D convolutions, the isomorphism due to the helical bound-
ary conditions must extend into the Fourier domain. In this paper, we explore the relationship
between 1-D and multi-dimensional FFT’s in helical coordinate systems. Specifically we
demonstrate the link between the wavenumber vector, k, in a multi-dimensional system, and
the wavenumber of a helical 1-D FFT, kh.
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Figure 1: Relationship between
1-D and 2-D convolution, FFT’s
and the helical boundary conditions.
james1-ill [NR]
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THEORY

For simplicity, throughout this section we refer to a two-dimensional sampled image, b; how-
ever, the beauty of the helical coordinate system is that everything can be trivially extended to
an arbitrary number of dimensions.

We employ two equivalent subscripting schemes for referring to an element of the two-
dimensional image, b. Firstly, with two subscripts, bpx ,py refers to the element that lies px in-
crements along the x-axis, and py increments along the y-axis. Ranges of pxand py are given
by 0 px Nx , and 0 py Ny respectively. Helical coordinates suggest an alternative
subscripting scheme: We can use a single subscript, ph px py Nx , such that bpx ,py bph

and the range of ph is given by 0 ph Nx Ny . Moreover, if we impose helical boundary
conditions, we can treat b as a one-dimensional function of subscript ph .

Linking 1-D and 2-D FFT’s

Taking the one-dimensional Z transform of b in the helical coordinate system gives

B(Zh)

Nx Ny 1

ph 0

bph Z ph
h . (1)

Here, Zh represents the unit delay operator in the sampled (helical) coordinate system. The
summation in equation (1) can be split into two components,

B(Zh)
Ny 1

py 0

Nx 1

px 0

bpx ,py Z
px py Nx
h (2)

Ny 1

py 0

Nx 1

px 0

bpx ,py Z px
h Z

Nx py
h . (3)

Ignoring boundary effects, a single unit delay in the helical coordinate system is equivalent
to a single unit delay on the x-axis; similarly, but irrespective of boundary conditions, Nx unit
delays in the helical coordinate system are equivalent to a single delay on the y-axis. This
leads to the following definitions of Zh and Z Nx

h in terms of delay operators, Zx and Z y , or
wavenumbers, kx and ky :

Zh Zx eikx x , (4)

Z Nx
h Z y eiky y , (5)
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where x and y define the grid-spacings along the x and y-axis respectively.

Substituting equations (4) and (5) into equation (3) leaves

B(kx ,ky) B(Zh)
Ny 1

py 0

Nx 1

px 0

bpx ,py Z px
x Z

py
y (6)

Ny 1

py 0

Nx 1

px 0

bpx ,py eikx xpx eiky ypy . (7)

Equation (7) implies that, if we ignore boundary effects, the one-dimensional FFT of b(x , y)
in helical coordinates is equivalent to its two-dimensional Fourier transform.

Wavenumber in helical coordinates

With the understanding that the 1-D FFT of a multi-dimensional signal in helical coordinates
is equivalent to the 2-D FFT, a natural question to ask is: how does the helical wavenumber,
kh , relate to spatial wavenumbers, kx and ky?

The helical delay operator, Zh , is related to kh through the equation,

Zh eikh x . (8)

In the discrete frequency domain this becomes

Zh eiqh kh x , (9)

where qh is the integer frequency index that lies in the range, 0 qh Nx Ny . The uncertainty
relationship, kh x 2

Nx Ny
, allows this to be simplified still further, leaving

Zh e
2 i

qh
Nx Ny . (10)

If we find a form of qh in terms of Fourier indices, qx and qy , that can be plugged into equa-
tion (10) in order to satisfy equations (4) and (5), this will provide the link between kh and
spatial wavenumbers, kx and ky .

The idea that x-axis wavenumbers will have a higher frequency than y-axis wavenumbers,
leads us to try a qh of the form,

qh Nyqx qy . (11)

Substituting this into equation (10) leads to

Zh e
2 i

(Nyqx qy )
Nx Ny (12)

e
2 i qx

Nx
qy

Nx Ny . (13)
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Since qy is bounded by Ny , for large Nx the second term in braces qy
Nx Ny

0, and this reduces
to

Zh e2 i qx
Nx Zx , (14)

which satisfies equation (4).

Substituting equation (11) into equation (10), and raising it to the power of Nx leads to:

Z Nx
h e

2 i
(Nyqx qy )

Ny (15)

e
2 i qx

qy
Ny . (16)

Since qx is an integer, e2 iqx 1, and this reduces to

Z Nx
h e

2 i
qy
Ny Z y , (17)

which satisfies equation (5).

Equation (11), therefore, provides the link we are looking for between qx , qy , and qh . It is
interesting to note that not only is there a one-to-one mapping between 1-D and 2-D Fourier
components, but equation (11) describes helical boundaries in Fourier space: however, rather
than wrapping around the x-axis as it does in physical space, the helix wraps around the ky-
axis in Fourier space (Figure 2). This provides the link that is missing in Figure 1, but shown
in Figure 3.

Figure 2: Fourier dual of helical
boundary conditions is also helical
boundary conditions with axis of he-
lix transposed. james1-transp [NR]
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Figure 3: Relationship between 1-
D and 2-D convolution, FFT’s and
the helix, illustrating the Fourier
dual of helical boundary conditions.
james1-ill2 [NR]
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As with helical coordinates in physical space, equation (11) can easily be inverted to yield

kx kx qx
2

Nx x

qh

Ny
, and (18)

ky ky qy
2

Ny y
qh Ny

qh

Ny
(19)

where [x] denotes the integer part of x .
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Speed comparison

For a two-dimensional dataset with dimensions, Nx Ny , the cost of a 1-D FFT in helical
coordinates is proportional to

Nx Ny log Nx Ny . (20)

For the same dataset, the cost of a 2-D FFT is

Ny (Nx log Nx ) Nx Ny log Ny Nx Ny log Nx log Ny

Nx Ny log Nx Ny . (21)

Therefore, the cost of a 1-D helical FFT of a 2-D dataset is exactly the same as the cost of an 2-
D FFT of the same dataset. The link between the two leads to no computational advantages in
the number of operations. However, other differences may lead to computational savings. For
example, a 2-D FFT with a power-of-two algorithm requires both Nx and Ny to be powers of
two. However, the 1-D helical FFT requires just Nx Ny to be a power of two, and so less zero-
padding may be required. The corollary, that a large 1-D FFT can be computed (with small
inaccuracies) using a 2-D FFT algorithm, also leads to potential computational savings. Two-
dimensional FFT’s are easier to code to run both in parallel and out-of-core than 1-D FFT’s,
leading to significantly faster code and a lower memory requirement without the additional
complexity of Singleton’s algorithm (Press et al., 1992).

EXAMPLES

Figure 4 compares the real part of the 2-D Fourier transform of a single spike with the equiv-
alent real part after a 1-D FFT in helical boundary conditions. The Fourier transforms are
centered, so that zero frequency is at the center of the plot. This has the effect that the artifacts
that would appear at the vertical boundaries (ky 0) of the image are more visible since they
appear at the center of the plot.

Figure 5 compares amplitude spectra for a broader band 2-D seismic VSP gather. Arti-
facts from the helical boundaries are very difficult to see on the spectra themselves, and the
difference image is very low amplitude.

Application to the multiple prediction

Multiple prediction is the first step in the class of adaptive multiple suppression methods (Ver-
schuur et al., 1992). In a laterally homogeneous earth, Kelamis and Verschuur (2000) show that
surface-related multiples can be predicted by taking the multi-dimensional auto-convolution
of a common midpoint (CMP) gather. This auto-convolution reduces to a multiplication in the
f-k domain, and so it can be performed rapidly with multi-dimensional FFT’s.

Since multi-dimensional FFT’s can be computed with a one-dimensional Fourier transform
in helical coordinates, we can predict multiples by wrapping a CMP gather onto a helix, taking
its 1-D FFT, squaring the result, and returning to the original domain.
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Figure 4: Comparison of real part of 2-D spectra: (a) input spike (single frequency), (b) real
part of 2-D FFT, (c) real part of 1-D helical FFT, and (d) difference between (b) and (c) clipped
to same level. james1-spikespec [ER,M]
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Figure 5: Comparison of 2-D amplitude spectra: (a) input 2-D VSP gather, (b) amplitude
spectrum from 2-D FFT, (c) amplitude spectrum from 1-D helical FFT, and (d) difference
between (b) and (c) clipped to same level. james1-schlumspec [ER,M]
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We tested this algorithm on a single CMP from the synthetic BP multiple dataset (Clapp,
1999). Figure 6 displays the multiple prediction result using the helical coordinate system
and only a single one-dimensional FFT. Theoretically, only first-order multiples should have
correct relative amplitudes, and the source wavelet appears twice in the multiple prediction.
However, the kinematics of all multiples are almost exact, even for higher-order multiples
below 5 s two-way traveltime.

CONCLUSION

We have explicitly found the relationship between multi-dimensional FFT’s and 1-D FFT’s on
a helix, linking the wavenumber vector, k, in a multi-dimensional system with the wavenumber
of a helical 1-D FFT, kh . Specifically, the Fourier dual of helical boundary conditions is
helical boundary conditions but with axes transposed. We have illustrated the concepts with
an example of multi-dimensional multiple prediction.
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Figure 6: The left panel shows the multiple model obtained with the helix and a 1-D FFT.
The right panel shows the input CMP gather with the offset axis reversed to facilitate the
comparison. Some wrap-around effects appear at the top of the multiple model. james1-BP2
[ER]
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