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Two strategies for sparse data interpolation

Morgan Brown1

ABSTRACT

I introduce two strategies to overcome the slow convergence of least squares sparse
data interpolation: 1) a 2-D multiscale Laplacian regularization operator, and 2) an ex-
plicit quadtree-style upsampling scheme which produces a good initial guess for iterative
schemes. The multiscale regularization produces an order-of-magnitude speedup in the
interpolation of a sparsely sampled topographical map. The quadtree method produces an
initial guess which leads to similar speedups for iterative methods.

INTRODUCTION

Iterative methods of sparse data interpolation are prone to slow convergence because the small
eigenvalues of most regularization operators correspond to slowly-varying trends in the un-
known model. Any approach to improve convergence of iterative techniques must improve
the condition number of the normal equations. SEP researchers have used recursive filter
preconditioning (Fomel et al., 1997) to overcome this problem.

I introduce two strategies to overcome the slow convergence of these interpolation prob-
lems. Firstly, I implement a composite regularization operator which applies a 2-D Laplacian
at different spatial scales. Use of the multiscale operator to regularize the least squares inter-
polation of a sparsely sampled topographical map produces an order-of-magnitude speedup in
convergence, compared to the case of regularizing with the single-scale 2-D Laplacian. Sec-
ondly, I implement a quadtree-style scheme to explicitly interpolate sparsely sampled data.
The quadtree method is fast, and as shown on the topographical intepolation example, pro-
duces reasonable results itself, and may also be used as an initial guess for inversion schemes.

BACKGROUND

Many types of geophysical data consist of measurements of a given quantity, collected at
arbitrary locations near the earth’s surface. The problem is to infer the value of this quantity
at all locations in the study area - in other words, to estimate the earth model of the quantity
that gave rise to the collected data. These ideas are embodied in the following simple linear
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relationship

Bm d. (1)

d and m are the measured data and estimated model, respectively, while B is a linear operator
that carries out the “experiment” by sampling the model at the measurement locations and
mapping these values to the data vector. However, the reverse – an estimate of the model,
given the data – is usually more useful. In this case, B must be “inverted” in some sense:

m̂ B†d. (2)

The simplest choice is B† BT , but any choice so that the model honors the known data
has a measure of validity. B† may also be cast as a least squares inverse. Depending on the
acquisition geometry of the experiment, the least squares problem may be underdetermined,
overdetermined, or more commonly, both (Menke, 1989). For purely overdetermined prob-
lems, the least squares inverse is B† (BT B) 1BT , but if some model points are undetermined,
BT B is singular.

Regularization

One method of solving so-called “mixed-determined” problems is to force the problem to be
purely overdetermined by applying regularization, in which case Equation (1) becomes

B
A

m
d
0

. (3)

A is the regularization operator; usually convolution with a compact differential filter. is a
scaling factor. The least squares inverse is then

B† (BT B 2AT A) 1BT . (4)

The regularization term, 2AT A, is nonsingular with positive eigenvalues, so it stabilizes sin-
gularities in BT B, but it is poorly-conditioned for many common choices of A, i.e., Laplacian
or gradient. The smallest eigenvalues of 2AT A correspond to smooth (low-frequency) model
components, so iterative methods of solving equation (4), including the conjugate-direction
method used in this paper, require many iterations to obtain smooth estimates of the model
(Shewchuk, 1994).

Preconditioning

We can precondition equation (3) by making a simple change of variables:

m Sx. (5)

Analogous to equation (4), we can write the least squares inverse for the preconditioned model
x:

B† (ST BT BS 2ST AT AS) 1BT . (6)
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If S is the left inverse of A (SA I), then equation (6) reduces to the classic damped least
squares problem (Menke, 1989):

B† (ST BT BS 2I) 1BT . (7)

If A is a differential operator, S is then a smoothing operator, and it follows that the smallest
eigenvalues of ST BT BS correspond to the complex (high frequency) model components. In
contrast to equation (4), smooth, useful models will appear in early iterations of the precondi-
tioned problem of equation (7), although absolute rate of convergence to the same final result
should not change.

Spectral factorization (Sava et al., 1998) and the Helix transform (Claerbout, 1998) permit
multidimensional, recursive, approximate inverse filtering, so it is indeed possible to compute
S A 1 for many choices of A. One downside of recursive filter preconditioning is that the
operator is difficult to parallelize. For large problems, the cost of a single least squares iteration
may be considerable, so the parallelization issue should be kept in mind.

Multiscale regularization

Another approach to combat the slow convergence of least squares sparse data interpolation
is to design a regularization operator that works at multiple scales simultaneously. Starting
with equation (3), we replace the regularization operator, A, with a composite regularization
operator (for the two-scale case):

A
ADk

(8)

Dk , mnemonic for downsampling, is a normalized binning operator which subsamples a vector
of size n to a vector of size n k, implicitly smoothing it in the process. Replacing A in equation
(3) with this new regularization operator gives

B
1A

2ADk

m
d
0
0

. (9)

1 and 2 are scaling factors. In the fashion of equation (4), we can write the least squares
inverse corresponding to the system of equation (9):

B† (BT B 2
1AT A 2

2DT
k AT ADk) 1BT (10)

Applying the downsampling operator Dk to the model vector attenuates high-frequency com-
ponents while boosting low-frequency components, thus we infer that the eigenvalue spectrum
of AT A DT

k AT ADk is better balanced than that of AT A alone, which speeds convergence to
a smooth model.

Claerbout (1999) presents a very similar multiscale methodology with one important dif-
ference: the filters, not the data, are upscaled from one scale to the next. Crawley (2000)
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applies this methodology to interpolating seismic data with nonstationary prediction error fil-
ters (PEF). The PEF is more readily upscaled, since it is normally conceptualized as a dip
annhilator, and it annhilates the same dips at all scales. Unfortunately, other filters, like the
Laplacian finite difference filter used in this paper, do not have the self-similarity property of
the PEF, so explicitly expanding the filter is a dangerous proposition.

Quadtree Pyramid Interpolation

The quadtree decomposition is an adaptive sampling scheme which seeks to divide a digital
image into regions of nearly homogeneous pixel value. Intuitively, the block size is smallest
where the image changes most rapidly, and largest where the pixel values are constant over
large areas.

A similar intuition applies to the interpolation of sparse data. Given point data collected on
the Earth’s surface, equation (1) relates how the data is placed into the discrete computational
grid. If data is collected at perfectly regular intervals on the Earth’s surface, it is possible to
choose a bin size such that one and only one measurement falls in each bin. On the other hand,
if the data sampling is irregular, two problems may arise: 1) more than one datum may fall
into a given bin, and the values averaged, implying information loss, and 2) no data may fall
into a given bin, leaving a “hole” in the model.

Applied to interpolation, the quadtree methodology seeks to adaptively sample the model
such that 1) where data are closely spaced, the bin size is small, to minimize averaging of adja-
cent data and 2) where data are sparsely distributed, the bin size is large, to avoid introducing
holes in the model.

First assume that there exists a regular bin size such that binning the data produces a model
with no holes. From here, we regard “bin size” as equivalent to “scale” - where scale goes from
coarsest (largest bins) to finest (smallest bins). Also assume that at each scale, the bins which
contain one or more data values are known.

mi - Model at scale i ; i 0 is coarsest scale, i n is finest scale.

Bi - Bin data onto grid of scale i ; i 0 is coarsest scale, i n is finest scale.

Ki - Known data mask at scale i – 1 for bins which contain data, 0 otherwise; i 0 is
coarsest scale, i n is finest scale.

Ui - Upsampling operator. Upsample from scale i 1 to scale i . i 0 is coarsest
scale, i n is finest scale. Adjoint to the downsampling operator in the multiscale
regularization discussion. For instance, if the downsampling operator sums four input
bin locations into an output location and averages, the upsampling operator takes the
averaged value and places it back into the four bins.

d - data.

The algorithm proceeds as follows.
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1. Compute m0 BT
0 d.

2. Loop over scale: i 1 n.

3. Upsample mu
i Ui mi 1.

4. Compute mb
i BT

i d.

5. Where Ki 1,mi mb
i . Otherwise, mi mu

i .

6. End Loop.

This approach is quite similar to the Multigrid-style method employed by Crawley (1995),
but there is no inversion involved – my method is totally explicit. Interestingly, Luettgen et
al. (1994) show that for the underdetermined optical flow determination problem of image
processing, use of an explicit quadtree scheme gives results identical by some measures to the
result obtained by solving a regularized inverse problem.

RESULTS

In this paper, I use a particularly simple example dataset - a 10-meter-resolution digital eleva-
tion map (DEM) of the area surrounding Fallen Leaf Lake, obtained freely from USGS2. This
map, along with some relevant landforms, is shown in Figure 1. To simulate an experiment,
I sampled the map randomly at 2250 points: 1000 points in the northern region, 1000 in the
southern region, and only 250 in the central region. The model grid is 256x256 points, giving
a 40-meter output resolution. Figure 2 shows the experiment’s fold, which varies from 0 to 3.

Figures 3 through 8 show the results of applying various estimation schemes to fill the
holes in the acquisition. Starting from upper-left and moving clockwise, each of the four
figures shows a) the “answer,” i.e., the 1024x1024 topographical surface, subsampled by a
factor of four, b) the estimated model, c) The error in the estimate clipped to a common value
and overlain by the the 2250 known data locations, and d) a crossplot of the estimated model
and answer at 4000 randomly chosen spatial locations.

Figure 3 shows 100 iterations with Laplacian regularization. Obviously, convergence has
not been achieved. Figure 4 shows 1000 iterations with Laplacian regularization. The cross-
plot is very tight, making this result tough to beat. Figure 5 shows 100 iterations of Laplacian
regularization with preconditioning. This result is disappointing: Convergence to this result
occured in only 10-20 iterations, but the result itself is not desirable. Although not the subject
of this paper, the “ice-cream-cone” nature of this result is alarming and merits further inves-
tigation. Figure 6 shows 100 iterations of multiscale Laplacian regularization. This result is
quite similar to the 1000 iterations Lapacian result, but the crossplot is not as tight. Also, we
expect this result to be a bit smoother than the pure Laplacian, but it is difficult to see if it
is. Figure 7 shows the explicit Quadtree Pyramid interpolation. The quadtree structure of the

2http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html
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Figure 1: Left: Digital elevation map of the vicinity around Fallen Leaf Lake, California.
Resolution is 10 meters. Windowed down from an original size of roughly 1400x1200 points
to 1024x1024 points. Right: North-south derivative applied to topography to highlight land-
forms. morgan1-topo2 [ER]
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Figure 2: Experimental fold. 2250 random samples on the 1024x1024 map are the “data”.
Model grid is 256x256. morgan1-topo2-fold [ER]
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result is quite apparent. Although the interpolated map is not smooth spatially, the general
structure of the topography are reproduced quite convincingly. Figure 8 shows 100 iterations
of Laplacian regularization, with the explicit Quadtree Pyramid interpolation (Figure 7) used
as a starting guess. This result is quite similar to the 1000 iterations Laplacian result; also the
100 iterations with the multiscale Laplacian.

As the “answer” is known in this problem, we can quantitatively check the accuracy of an
estimated model. The statistics below speak for themselves. Taking the standard deviation of
the error to be a measure of goodness, we can rank the results from best to worst:

1. Laplacian regularization, 1000 iterations.

2. Multiscale Laplacian regularization, 100 iterations.

3. Laplacian regularization, 100 iterations, quadtree pyramid interpolation used as starting
guess.

4. Quadtree pyramid direct interpolation.

5. Preconditioned Laplacian regularization, 100 iterations.

6. Laplacian regularization, 100 iterations.

Laplacian regularization, 100 iterations

| Min. Val. | Max. Val. | Mean Val. | Median | Std. Dev. |
-------------------------------------------------------------------------------

True values: -42.10075 253.25171 33.82695 12.50521 48.19902
Estimated values: 0.00000 246.00000 44.96923 18.00000 54.02688

Errors: -70.55768 235.33752 11.14226 0.87845 29.06191
Absolute errors: 0.00000 235.33752 12.89230 2.21318 28.32898
Relative errors: 0.00000 1206.58191 3.02346 0.06742 33.63662

Laplacian regularization, 1000 iterations

| Min. Val. | Max. Val. | Mean Val. | Median | Std. Dev. |
-------------------------------------------------------------------------------

True values: 3.19786 232.39223 45.01379 20.00496 53.70287
Estimated values: 0.00000 246.00000 44.96923 18.00000 54.02688

Errors: -68.31208 76.44979 -0.04465 -0.00007 5.77580
Absolute errors: 0.00000 76.44979 2.51392 0.80804 5.20023
Relative errors: 0.00000 1.00000 0.06820 0.02891 0.10538

Preconditioned Laplacian regularization, 100 iterations

| Min. Val. | Max. Val. | Mean Val. | Median | Std. Dev. |
-------------------------------------------------------------------------------

True values: 2.55815 220.00000 38.08480 18.64038 45.06718
Estimated values: 0.00000 246.00000 44.96923 18.00000 54.02688

Errors: -61.61859 174.82333 6.88441 0.54753 19.72276
Absolute errors: 0.00000 174.82333 8.05753 1.45995 19.27327
Relative errors: 0.00000 43.94756 0.26195 0.07687 1.28934
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Figure 3: Simple Laplacian regularization, 100 iterations. Clockwise from upper-
left: True model; Estimated model; Error; Crossplot of true versus estimated model.
morgan1-topodata2-lap100-show [ER]
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Figure 4: Laplacian regularization, 1000 iterations. Clockwise from upper-left:
True model; Estimated model; Error; Crossplot of true versus estimated model.
morgan1-topodata2-lap1000-show [ER]
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Figure 5: Preconditioned Laplacian regularization, 100 iterations. Clockwise from upper-
left: True model; Estimated model; Error; Crossplot of true versus estimated model.
morgan1-topodata2-prec100-show [ER]
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Figure 6: Multiscale Laplacian regularization, 100 iterations. Clockwise from upper-
left: True model; Estimated model; Error; Crossplot of true versus estimated model.
morgan1-topodata2-ms100-show [ER]
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Figure 7: Quadtree pyramid interpolation result. Clockwise from upper-left:
True model; Estimated model; Error; Crossplot of true versus estimated model.
morgan1-topodata2-pyramid-show [ER]
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Figure 8: Laplacian regularization, 100 iterations. Clockwise from upper-left:
True model; Estimated model; Error; Crossplot of true versus estimated model.
morgan1-topodata2-pyrlap100-show [ER]
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Multiscale Laplacian regularization, 100 iterations

| Min. Val. | Max. Val. | Mean Val. | Median | Std. Dev. |
-------------------------------------------------------------------------------

True values: -1.53884 229.31610 44.82654 20.00943 53.62170
Estimated values: 0.00000 246.00000 44.96923 18.00000 54.02688

Errors: -62.51950 107.75475 0.14272 -0.00067 8.23634
Absolute errors: 0.00000 107.75475 3.38367 1.06108 7.51047
Relative errors: 0.00000 7.89127 0.09558 0.03850 0.23027

Quadtree pyramid interpolation

| Min. Val. | Max. Val. | Mean Val. | Median | Std. Dev. |
-------------------------------------------------------------------------------

True values: 0.00000 235.00000 42.54507 18.00000 52.90804
Estimated values: 0.00000 246.00000 44.96923 18.00000 54.02688

Errors: -77.00000 102.00000 2.42414 0.00000 12.79912
Absolute errors: 0.00000 102.00000 6.17795 1.00000 11.46838
Relative errors: 0.00000 5.82759 0.18037 0.04881 0.40353

Laplacian regularization, 100 iterations, Quadtree pyramid starting guess

| Min. Val. | Max. Val. | Mean Val. | Median | Std. Dev. |
-------------------------------------------------------------------------------

True values: -3.58206 237.56772 43.53872 18.33733 53.00369
Estimated values: 0.00000 246.00000 44.96923 18.00000 54.02688

Errors: -68.67423 71.94943 1.43058 0.00038 8.61643
Absolute errors: 0.00000 71.94943 3.64835 0.85361 7.93589
Relative errors: 0.00000 9.47873 0.10503 0.03159 0.31080

DISCUSSION

The example presented in this paper does not exemplify the interesting subject of scale-
dependant phenomena; seismic wave propogation being one of them. In this case, the scaling
is generally in terms of temporal frequency. Specifically, estimates of an earth property ob-
tained by inversion of seismic data collected at different scales will generally be different
(Mavko et al., 1998). Small-scale measurements (with limited spatial coverage) of various
earth properties are obtainable from well logs, while larger-scale measurements with good
spatial coverage are provided by surface seismic data. In theory, the physics governing the
scale dependance of the problem is known; I believe that a stronger form of multiscale regu-
larization can effectively constrain a joint inversion of surface seismic and well log data.

The quadtree pyramid interpolation method I presented is common sensical, but has some
strong theoretical justifications as well. The operator B of equation 1 which conducts the
experiment has a very simple form, and a similarly simple nullspace. The nullspace is simply
all linear combinations of the unknown model points. Least squares regularization constrains
the nullspace with a priori assumptions. The quadtree pyramid is slightly different. Recall that
there always exists a bin size such that B of equation 1 is invertible; the model at this scale is
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unique. Going to the next finest scale, we can simply fill the holes with the model estimate at
the coarsest scale. In this sense, we fill the nullspace optimally in the sense that the filling is
done with “known” data. Analogously, in spline theory, it can be shown (Ahlberg et al., 1967)
that the best estimator of the spline coefficients on a fine mesh are the coefficients on a coarser
mesh.

CONCLUSIONS

I presented two multiscale methods for sparse data interpolation problems: multiscale regular-
ization and the quadtree pyramid. Multiscale regularization produced an order-of-magnitude
speedup (100 iterations versus 1000) in convergence for least squares interpolation of sparsely
sampled topographical data, compared to regularization with a simple Laplacian. The quadtree
pyramid produces a result which is of decent quality, with essentially no cost – roughly one it-
eration. When used as a starting guess for iterative solutions (simple Laplacian regularization),
the quadtree pyramid result leads to a good result for ten times fewer iterations.

ACKNOWLEDGMENTS

The program used to compute statistics about the estimated models was adapted from one
written by Sergey Fomel.

REFERENCES

Ahlberg, J., Nilson, E., and Walsh, J., 1967, The theory of splines and their applications:
Academic Press, Inc.

Claerbout, J., 1998, Multidimensional recursive filters via a helix: Geophysics, 63, no. 05,
1532–1541.

Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings image
enhancement: Stanford Exploration Project, http://sepwww.stanford.edu/sep/prof/.

Crawley, S., 1995, Multigrid nonlinear SeaBeam interpolation: SEP–84, 279–288.

Crawley, S., 2000, Seismic trace interpolation with nonstationary prediction-error filters:
SEP–104.

Fomel, S., Clapp, R., and Claerbout, J., 1997, Missing data interpolation by recursive filter
preconditioning: SEP–95, 15–25.

Luettgen, M. R., Karl, W. C., and Willsky, A. S., 1994, Efficient multiscale regularization with
applications to the computation of optical flow: IEEE Transactions on Image Processing, 3,
no. 1, 41–64.



SEP–105 Sparse data interpolation 17

Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook: Cambridge Uni-
versity Press.

Menke, W., 1989, Geophysical data analysis: discrete inverse theory: Academic Press.

Sava, P., Rickett, J., Fomel, S., and Claerbout, J., 1998, Wilson-Burg spectral factorization
with application to helix filtering: SEP–97, 343–351.

Shewchuk, J. An introduction to the conjugate gradient method without the agoniz-
ing pain:. http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/painless-conjugate-
gradient.ps, 1994.



216 SEP–105


