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Short Note

Test case for PEF estimation with sparse data II

Morgan Brown, Jon Claerbout, and Sergey Fomel1

INTRODUCTION

The two-stage missing data interpolation approach of Claerbout (1999) (henceforth, the GEE
approach) has been applied with great success (Fomel et al., 1997; Clapp et al., 1998; Crawley,
2000) in the past. The main strength of the approach lies in the ability of the prediction error
filter (PEF) to find multiple, hidden correlation in the known data, and then, via regularization,
to impose the same correlation (covariance) onto the unknown model. Unfortunately, the GEE
approach may break down in the face of very sparsely-distributed data, as the number of valid
regression equations in the PEF estimation step may drop to zero. In this case, the most
common approach is to simply retreat to regularizing with an isotropic differential filter (e.g.,
Laplacian), which leads to a minimum-energy solution and implicitly assumes an isotropic
model covariance.

A pressing goal of many SEP researchers is to find a way of estimating a PEF from sparse
data. Although new ideas are certainly required to solve this interesting problem, Claerbout
(2000) proposes that a standard, simple test case first be constructed, and suggests using a
known model with vanishing Gaussian curvature. In this paper, we present the following,
simpler test case, which we feel makes for a better first step.

Model: Deconvolve a 2-D field of random numbers with a simple dip filter, leading to
a “plane-wave” model.

Filter: The ideal interpolation filter is simply the dip filter used to create the model.

Data: Subsample the known model randomly and so sparsely as to make conventional
PEF estimation impossible.

We use the aforementioned dip filter to regularize a least squares estimation of the missing
model points and show that this filter is ideal, in the sense that the model residual is relatively
small. Interestingly, we found that the characteristics of the true model and interpolation result
depended strongly on the accuracy (dip spectrum localization) of the dip filter. We chose the
8-point truncated sinc filter presented by Fomel (2000). We discuss briefly the motivation for
this choice.
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METHODOLOGY

Claerbout (1999) presents a two-stage methodology for missing data interpolation. In the first
stage of the so-called GEE approach, a prediction error filter (PEF) is estimated from known
data. In the second stage, the PEF is used in a least squares interpolation scheme to regularize
the undetermined (missing) model points. Crawley (2000) extends the two-stage procedure to
use nonstationary PEF’s.

The first stage (PEF estimation) of the two-stage procedure consists of convolving the
unknown filter coefficients with the known data, and adjusting the coefficients such that the
residual is minimized. Conceptually, in the process of convolution, a filter template is slid
past every point in the data domain. The GEE approach adheres to the following convention:
unless every point in the filter template overlies known data, the regression equation for that
output point is ignored, and will not contribute to the PEF estimation.

Unfortunately, when the known data is very sparsely distributed, all the regression equa-
tions may depend on missing data, making PEF estimation impossible. The motivation of this
paper is not to present a new methodology for estimating a PEF from sparse data, but instead
to create a very simple test case which fulfills the following criteria:

1. The known data is distributed so sparsely as to render the traditional GEE two-stage
approach ineffective.

2. The underlying model is conceptually simple and stationary.

3. The ideal PEF for the underlying model is obtainable by common sense.

The Test Case

Claerbout (2000) proposes a test case for which the Gaussian curvature of the model vanishes.
In this paper, we present an even simpler test case. Given a 2-D random field, we deconvolve
with a known dip (or steering) (Clapp et al., 1997) filter to obtain a “plane wave” model, as
shown in Figure 1. To simulate collected “data”, we sampled the model of Figure 1 at about
60 points randomly, and about two-thirds of the way down one trace in the center. The results
are shown in Figure 2.

Digression: Accuracy of Dip Filters

Given a pure plane wave section, i.e., a wavefield where all events have linear moveout, de-
signing a discrete multichannel filter to annihilate events with a given dip seems a trivial task.
In fact, it is quite a tricky task; an exercise in interpolation. For many applications, accuracy
considerations make the choice of interpolation algorithm critical. Accuracy here means lo-
calization of the filter’s dip spectrum — ideally the filter should annihilate only the desired
dip, or a narrow range of dips. The problem is illustrated in Figure 3. Given a plane wave
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Figure 1: True model - plane waves
dipping at 22.5 . morgan2-model
[ER]

Figure 2: Left: Collected data - one known trace, about 60 randomly-selected known data
points. Right: Known data selector. morgan2-data [ER]

Figure 3: Steering filter schematic.
Given a plane wave with dip p,
choose the ai to best annihilate the
plane wave. morgan2-steering
[NR]
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with dip p, we must set the filter coefficients ai to best annihilate the plane wave. Achiev-
ing good dip spectrum localization implies a filter with many coefficients, by the uncertainly
principle (Bracewell, 1986). If computational cost was not an issue, the best choice would be
a sinc function with as many coefficients as time samples. Realistically, however, a compro-
mise must be found between pure sinc and simple linear interpolation. The reader is referred
to Fomel’s (2000) paper, which discusses these issues much more thoroughly. The model of
Figure 1 was computed using an 8-point tapered sinc function. Figure 4 compares the re-
sult of using, for the same task, dip filters computed via four different interpolation schemes:
8-point tapered sinc, 6-point local Lagrange, 4-point cubic convolution, and simple 2-point
linear interpolation. As expected, we see that the more accurate interpolation schemes lead to
increased spatial coherency in the model panel. Clapp (2000) has been successful in using as
few as 3 coefficients in steering filters for regularizating tomography problems, so we see that
the needed amount of steering filter accuracy is a problem-dependent parameter.

Figure 4: Interpolation schemes compared. Deconvolution of random image with labeled
steering filters. morgan2-interp-comp [ER]
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INTERPOLATION RESULTS

The plane wave model of Figure 1 dips at 22.5 , so we can easily design a filter to annihilate it.
Using the GEE approach for interpolating missing data (Claerbout, 1999), we interpolate the
data of Figure 2, using the 8-point tapered sinc steering filter discussed above. The results are
shown in Figure 5. We see that the interpolation is quite good in the center region, where the
filter can “see” one or more known data points, as evidenced by a nearly uncorrelated model
residual. In the corners, the result is imperfect in regions in which no known data points exist
along diagonal tracks. In order to suppress helix wraparound and other edge effects, we apply
zero-padding around the edges of the study region.

Figure 5: Clockwise from upper left: Known data; Interpolation regularized with 8-point
tapered sinc steering filter; Difference between known model and interpolated result; known
model. morgan2-correctFill [ER,M]
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CONCLUSIONS

We presented a 2-D test case for sparse data interpolation and give a good PEF with which to
do it. The test case renders the traditional GEE two-stage interpolation scheme inapplicable.
Claerbout (2000) suggests a nonlinear iteration, where filter and model are taken as unknown,
but the best solution is still a subject of discussion among many SEP researchers. Regardless
of the chosen interpolation strategy, the “correct” PEF and model are both known in this test
case, so it should prove a useful starting point.
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