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A tutorial on mixed-domain wave-equation
migration and migration velocity analysis

Paul Sava1

ABSTRACT

This tutorial describes mixed-domain wave-equation migration and migration velocity
analysis techniques in a unified theoretical framework. I review two of the most general
mixed-domain migration methods, Fourier finite-difference and generalized screen, and
show how other commonly used wave-equation migration methods come about as special
cases. I use the Born approximation to derive general expressions for the wave-equation
migration velocity analysis operator, and show two simple backprojection examples built
around a North Sea dataset.

INTRODUCTION

Wave-equation migration velocity analysis, WEMVA, (Biondi and Sava, 1999; Sava and Biondi,
2000) is a new and promising imaging tool, specifically aimed at regions of high geological
complexity. The WEMVA method operates through recursive migration of the data, with the
goal of improving the quality of the migrated images. Consequently, the operator used for
WEMVA is tightly coupled with the operators used for migration, therefore a good under-
standing of the WEMVA operator requires a similar understanding of the migration operators
from which it is derived.

The main goal of this paper is to clarify the theoretical origins of the WEMVA method,
and to precisely show how it relates to the larger family of migration methods from which it is
derived, the mixed-domain migration methods.

I begin with a review of mixed-domain migration. The two most general members of the
family are known in the literature as the Fourier finite-difference (FFD) method, introduced by
Ristow and Ruhl (1994), and the generalized screen (GSP) method (de Hoop, 1996). All the
other methods in the family are just simplified cases, where we neglect some of the terms of
the general relations. We can easily find many other methods known in the literature under var-
ious names, like: phase-shift (Gazdag, 1978; Gazdag and Sguazzero, 1984), split-step Fourier
(Stoffa et al., 1990), local Born-Fourier or pseudo-screen (Huang and Wu, 1996), complexi-
fied pseudo-screen (de Hoop and Wu, 1996), extended local Born-Fourier (Huang et al., 1999),
a.s.o. Here, I present all these methods in a unified framework, with the goal of facilitating
easy navigation through the relevant literature.
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Next, I generalize the WEMVA operator based on the mixed-domain operators from which
it is derived. It turns out that a Born linearization of either the FFD or the GSP relations, give
general expressions for the WEMVA operator, from which we can obtain various special cases,
as it is done for the associated mixed-domain migration methods.

Finally, I use a North Sea example to visualize the results of the WEMVA backprojection
operator. I simulate small, localized perturbations on the seismic image, and show how they
get backprojected in the slowness function using a particular choice of the WEMVA operator.
The result is a bundle of “fat” rays, which can be correlated with the trajectories obtained for
rays built using conventional ray tracing. This comparison enables us to easily visualize the
band-limited character of wave-equation migration velocity analysis, and to gain insight into
how this method operates in a real case.

Next section presents the general mixed-domain migration equations, followed by a dis-
cussion of the Born approximation and two sections dedicated to the various approximations
encountered in the literature. In the end, I show how we can generalize the scattering and,
implicitly, the WEMVA operators, and finish with the example on the North Sea dataset.

MIXED-DOMAIN MIGRATION THEORY

Downward continuation is the process in which we recursively extrapolate in depth the wave-
field recorded at the surface. Mathematically, this operation amounts to a phase shift applied
to the wavefield (Claerbout, 1985)

Uz z Uz ,

where Uz is the wavefield at depth z, and Uz z is the extrapolated wavefield at depth z z.
The downward continuation operator at depth z is

eikz z , (1)

with the vertical wavenumber, kz , given by the one-way wave equation, also known as the
single square root (SSR) equation

kz
2s2 km

2,

where is the temporal frequency, s is the laterally variable slowness of the medium, and km

is the horizontal wavenumber.

Since downward continuation by phase shift can be applied for slowness models that only
vary with depth, we need to split the operator into two parts: a constant slowness continua-
tion operator applied in the k domain, which accounts for the propagation in depth, and a
screen operator applied in the x domain, which accounts for the wavefield perturbations
due to the lateral slowness variations. In essence, we approximate the vertical wavenumber kz

with its constant slowness counterpart kzo, corrected by a term describing the spatial variability
of the slowness function (Figure 1).
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Figure 1: A sketch of mixed-domain
migration. The wavefield at depth
z is downward continued to depth
z z trough a variable-slowness
screen. paul1-screen [NR]
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z

Fourier finite-difference

In one of its most general forms (Ristow and Ruhl, 1994), we can write kz as

kz kzo 1
s

so n 1

( 1)n
1
2

n

km

s

2n

n (s so) , (2)

where
1
2

n
are binomial coefficients for integer numbers n, s represents the spatially variable

slowness function at depth z, so is a constant approximation to s, and n is a sum of terms
derived from s and so. The FFD equation is obtained using two Taylor series expansions of
the SSR equations written for kz and kzo. I give a full derivation of Equation (2) in Appendix
A.

Higher accuracy can be achieved by replacing the Taylor expansion in Equation (2) with
Muir’s continuous fraction expansion (Claerbout, 1985). The equivalent form of the general
Fourier finite-difference propagator is:

kz kzo 1
s

so n 1

km
s

2

an bn
km

s

2
(s so) , (3)

where an and bn are coefficients that, in general, depend on the medium and the constant
reference slownesses, s and so. The coefficients an and bn are derived either by identification
of terms between Equation (2) and Equation (3), after the approximation 1

1 x2 1 x2, or by
an optimization problem as described by Ristow and Ruhl (1997).

Generalized screen

In a second general form, given by the generalized screen propagator (GSP) (Le Rousseau and
de Hoop, 1998), we can write kz as

kz kzo kzo
n 1

( 1)n
1
2

n

2s2
o

2s2
o km

2

s2
o s2

s2
o

n

. (4)
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The GSP equation is obtained through a Taylor series expansion of kz, assuming small varia-
tions between the true (s) and reference (so) slownesses. A full derivation of Equation (4) is
given in Appendix B.

Equation (4) may become unstable when the denominator of the sum vanishes. One way
to avoid such a situation is to replace the vanishing term with another Taylor series expansion

kz kzo kzo
n 1

( 1)n
1
2

n
i 0

( 1)i 1

i

km
2

( so)2

i
s2

o s2

s2
o

n

. (5)

As for the FFD equation, we can achieve higher accuracy by replacing the Taylor series ex-
pansions with Muir’s continuous fraction expansions.

We can use Equations (2) and (5) to derive the formulae for many of the methods com-
monly referred to as screen propagators, using various approximations for the vertical wavenum-
ber kz. For simplicity, however, in the next sections I use the Fourier finite-difference equation
(2), because it offers a much more straight-forward derivation of the simplified cases, together
with easier implementation. Nevertheless, Equation (5) can also be used to obtain the simpli-
fied cases, as presented in Appendix B.

Figure 2 is a comparison of the angular accuracy achieved by the two methods, FFD and
GSP. GSP achieves higher angular accuracy compared to FFD for the same order of the ap-
proximation, although, as mentioned earlier, stability requires further approximations that in-
evitably decrease the accuracy of GSP. Furthermore, the GSP equation involves kzo in the
Taylor series expansion, which does not have a straightforward finite-difference implementa-
tion.

BORN APPROXIMATION

Equation (1) exhibits a non-linear relationship between the laterally variable slowness and the
propagated wavefield. For the remaining of this paper, I will conventionally refer to the meth-
ods in this class as non-linear methods. A second class of methods are found using the Born
approximation for the wavefield perturbations. In physical terms, this approximation is only
valid for media characterized by weak scattering, that is small velocity variation. Mathemat-
ically, the Born approximation is equivalent to a linearization of the exponential ex 1 x .
With this new approximation, the expression for the downward-continued wavefield becomes:

Uz z eikz o zUz 1 i z 1
s

so n 1

( 1)n
1
2

n

km

s

2n

n (s so) . (6)

Next two sections describe the various mixed-domain methods belonging to the two afore-
mentioned classes, linear and non-linear, in relation to the general formula given by Equa-
tion (2).
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Figure 2: Angular accuracy compari-
son between FFD and GSP. The hor-
izontal axis is the propagation angle,
while the vertical axis is the ratio of
the approximate and true values of the
depth wavenumbers. Various curves
correspond to different levels of ac-
curacy. The thicker line corresponds
to the split-step Fourier method. The
dashed line corresponds to FFD us-
ing a second order Muir continuous
fraction expansion. For both FFD
and GSP, the higher order approxima-
tions achieve higher accuracy. The
graphs correspond to 1 s 2.0 km/s
and 1 so 1.9 km/s. paul1-ffdgsp
[CR]
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NON-LINEAR MIGRATION METHODS

The non-linear class of methods preserve the downward continuation operator, given by Equa-
tion (1), in its exponential form. Starting from Equation (2), we can derive the equations that
describe various approximate migration methods. Here is a summary of methods, going from
complex to simple:

1. We can simplify the FFD migration equation by ignoring the spatial variability of the

slowness function for the terms of the summation, s
so

1 and n

2n 2

(l 0
n 1)

1, which gives

the following equation (Biondi, 1999):

kz kzo 1
n 1

( 1)n
1
2

n

km

so

2n

(2n 1) (s so) . (7)

2. In the next simplification, we consider, in addition to the earlier approximations, that the
ratio s

so
0, which leads to the split-step Fourier method a.k.a. phase-screen method

(Stoffa et al., 1990):

kz kzo (s so) (8)
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3. Finally, the simplest method of the family is phase-shift (Gazdag, 1978; Gazdag and
Sguazzero, 1984), for which we further assume that s so 0, therefore

kz kzo. (9)

For most of these methods, we can separate approximations of various orders, depending
on the number of terms in the sum (n). We can also have versions that use several values of
the reference slowness (so), followed by interpolation of the continued wavefield.

The bottom line is that all these simplified methods are just particular cases of the Fourier
finite-difference method mathematically described by Equation (2). Similarly, we can derive
all these simplified methods from the generalized screen method, mathematically described
by Equation (5).

LINEAR MIGRATION METHODS

Another class of screen methods are derived using the Born approximation applied to the
scattered wavefield. Mathematically, this is described by a linearization of the downward con-
tinuation operator. After linearization, the wavefield at depth z z is related to the wavefield
at the previous depth level z by Equation (6). As for the non-linear methods, we can simplify
this equation, and obtain different methods commonly encountered in the literature:

1. We can, again, ignore the spatial variability of the slowness function for the terms of

the summation, s
so

1 and n

2n 2

(l 0
n 1)

1, which gives the following linear mixed-domain

migration equation, known in the literature as the extended local Born-Fourier method
(Huang et al., 1999):

Uz z eikz o zUz 1 i z 1
n 1

( 1)n
1
2

n

km

so

2n

(2n 1) (s so) .

(10)

2. We can consider Equation (10) as a Taylor series expansion, therefore we can write it in
a more compact, but equivalent, form as

Uz z eikz o zUz 1 i z
so

2so
2 km

2
(s so) . (11)

This equation describes the local Born-Fourier a.k.a. pseudo-screen method (Huang
and Wu, 1996).

The extended local Born-Fourier method, Equation (10), is preferable in practice, since
Equation (11) can lead to instability when the denominator vanishes. Another way of
avoiding the instability is to add a small complex quantity, i km , to the denominator,
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method that is known as the complexified local Born-Fourier or complexified pseudo-
screen method (de Hoop and Wu, 1996):

Uz z eikz o zUz 1 i z
so

2so
2 (1 i )2 km

2
(s so) (12)

SCATTERING AND MIGRATION VELOCITY ANALYSIS

The generalization analyzed in the preceding sections can also be used in the area of wave-
equation migration velocity analysis (Biondi and Sava, 1999; Sava and Biondi, 2000).

The downward continued wavefield in Equation (6) can be rewritten as

Uz z Uz 1 (s so) (13)

where, as before, is the downward continuation operator applied in the k domain, and
is the scattering operator, applied in the x domain. The scattered wavefield created at

depth z z under the influence of the background wavefield (Uz) by a slowness perturbation
at depth z ( sz s so) is

Wz z Uz sz , (14)

where the general form of the scattering operator derived from FFD is

i z 1
s

so n 1

( 1)n
1
2

n

km

s

2n

n . (15)

When computed using the operator in Equation (15), the scattered wavefield, Equation (14),
exhibits a nonlinear relation to the slowness perturbation. A straightforward linearization is to
approximate for the constant background slowness. Biondi and Sava (1999) implement the
prestack version of the scattering operator using a 4th order Taylor series expansion, under the
constant velocity assumption ( n 2n 1 and s so) for all the terms in the sum:

i z 1
1

2

km

so

2 3

8

km

so

4 5

16

km

so

6 35

128

km

so

8

. (16)

Figure 3 shows a comparison of various approximation for the linear scattering operator,
Equation (15). As expected, the relative error of the backprojection operator increases with

increasing ratio km
s . Also, Muir’s continuous fraction expansion gives a significantly better

approximation to the scattering operator for the same order of the expansion. The solid hori-
zontal line corresponds to 10% relative error of the approximate to the true scattering operator.
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Figure 3: Comparison of various ap-
proximation for the linear scattering
operator. The solid lines correspond
to scattering operators computed us-
ing the spatially variable slowness
function (s), and the dashed lines
correspond to the scattering opera-
tor computed using only the back-
ground slowness (so). The accuracy
of the operator improves when using
the variable slowness function. The
horizontal axis is the ratio km

s , and

the vertical axis is the relative error of
the linear scattering operator with re-
spect to the true one, in logarithmic
scale. paul1-sc [CR]
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After we apply the imaging condition to the downward continued scattered wavefield
Equation (13), we can formulate the relationship between the image ( R) and slowness ( S)
perturbations as

R S (17)

where is the wave-equation migration velocity analysis operator (Biondi and Sava, 1999).

Next section presents a simple example, in which I simulate R and compute S using a
prestack backprojection operator derived from Equation (16).

WEMVA EXAMPLES

I exemplify the simple application of the backprojection operator in Equation (17) on a North
Sea dataset (Vaillant and Sava, 1999; Sava, 2000). Figure 4 is the velocity map used to com-
pute the background wavefield, and Figure 5 is the image obtained after split-step migration
with the background slowness model using three reference velocities.

The image is extracted from common-image gathers at a selected value of the offset ray-
parameter (Prucha et al., 1999), which is approximately equivalent to the image for a given
incidence angle at the reflectors (Sava and Fomel, 2000). As expected, the geologic structure
is not perfectly defined by one single incidence angle, although this is not a problem for
these examples, since I use the image at a given incidence angle only to create the image
perturbation, but use the entire prestack image as background during backprojection.

Figure 6 is a simulated image perturbation ( R) localized under the salt flank. I create
this perturbation by cutting a small window in the target region, shifting it down so that the
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Figure 4: Velocity map for the North Sea dataset. paul1-fat.V [CR]

Figure 5: The image at a selected offset ray parameter. paul1-fat.R [CR]
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phase difference between the two images doesn’t violate the Born approximation, and taking
the difference.

Next, Figure 7 is the result of applying the backprojection operator in Equation (17) to the
image perturbation in Figure 6. The backprojection operator turns the image perturbation into
a bundle of “fat” rays ( S) emerging from the region of perturbation. The rays follow various
trajectories, in accordance to the velocity model and with the background image.

Figure 6: Image perturbation situated under the salt flank, overlaid by a pair of specular rays.
paul1-fat.DR3 [CR]

Figure 7: Slowness perturbation obtained by backprojecting the image perturbation in Fig-
ure 6. Overlaid are a pair of specular rays. paul1-fat.DS3 [CR]

For comparison, I superimpose on both images in Figures 6 and 7 a pair of specular rays,
shot at roughly the same angle with respect to the normal to a hypothetical reflector in the
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perturbation region as the angle given by the offset ray parameter at which I selected the
image perturbation. The rays overlap well over one pair of “fat” rays. In fact, these images
graphically illustrate the band-limited character of wave-equation migration velocity analysis,
which is its most important property.

Figure 8: Image perturbation situated away from the salt flank, overlaid by a pair of specular
rays. paul1-fat.DR4 [CR]

Figure 9: Slowness perturbation obtained by backprojecting the image perturbation in Fig-
ure 8. Overlaid are a pair of specular rays. paul1-fat.DS4 [CR]

The backprojection in Figure 7 corresponds to just a particular selection of the incidence
angle at the reflector. Perturbations at other angles backproject over other regions of the
slowness model. When all backprojections are put together, we obtain a smoother version
of slowness perturbation in comparison to that obtained using ray tomography (Sava and
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Biondi, 2000). Ray tomography requires a significant amount of model regularization (Clapp
and Biondi, 1999) to control the shape of the inverted model. However, given its intrinsic
band-limited nature, wave-equation migration velocity analysis requires less regularization,
or model-styling, applied on the slowness model. The net result is that we need less a-priori
information about our slowness model, and we can extract more information from our data.

Unlike in the first example, Figures 6 and 7, where part of the wavefield propagates through
the salt and, therefore, some of the fat rays get significantly distorted, in a second example the
wavefield propagates through a much simpler part of the velocity model, and so the fat rays
are less distorted (Figures 8 and 9).

As pointed out by Sava and Biondi (2000), the Born approximation is the biggest limitation
of the method, since stability requires us to ensure that we do not violate the small-perturbation
assumption. Also, the frequency content of the images is not the same, therefore we can obey
the Born approximation in some regions, but violate it in others. Better ways to control the
Born approximation await for future research.

CONCLUSION

Fourier finite-difference (FFD) and generalized screen (GSP) are two of the most general
members of the mixed-domain wave-equation migration family. For the same order of ap-
proximation, GSP can achieve a higher angular accuracy than FFD, although GSP’s imple-
mentation is not as straightforward as that of FFD, and its stability is harder to ensure. Other
members of the family can be easily obtained by simply neglecting some of the terms in the
general equations. This paper serves as a tutorial that brings together all the members of the
family in a unified framework.

By analogy with mixed-domain migration operators, I generalize the wave-equation mi-
gration velocity analysis operator. Many other approximate formulae can be derived from the
general WEMVA equations. The approximations with the largest impact are those based only
on the background slowness, which enable linearized image perturbation – slowness perturba-
tion relationship.

Simple backprojection examples illustrate the band-limited character of velocity analysis
using the wave-equation. I present WEMVA “fat” rays that are easy to correlate to high-
frequency trajectories obtained by conventional ray-tracing.
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APPENDIX A

This Appendix is a step-by-step derivation of the Fourier finite-difference equation, Equa-
tion (2), one of the most general forms of the equations describing mixed-domain migration.

I begin with Taylor series approximations of the single square root equations for the verti-
cal wavenumbers corresponding to the true slowness (s)

kz
2s2 km

2 s 1
km

s

2

s 1
n 1

( 1)n
1
2

n

km

s

2n

, (A-1)

and for the reference slowness (so)

kzo
2so

2 km
2 so 1

km

so

2

so 1
n 1

( 1)n
1
2

n

km

so

2n

, (A-2)

where
m

n
are binomial coefficients 2 for real m and integer n. We can use Equation (A-2)

to replace kzo in Equation (A-1) and obtain an equation relating the true depth wavenumber kz

to the reference one:

kz kzo (s so)
n 1

( 1)n
1
2

n
s

km

s

2n

so
km

so

2n

. (A-3)

Next we re-arrange the slowness terms of the equation to facilitate the substitution of the ratio
of the true and reference slownesses: p s

so

kz kzo so
s

so
1 so

n 1

( 1)n
1
2

n

km

s

2n s

so

s2n

s2n
o

, (A-4)

which leads to the more compact relation:

kz kzo so (p 1) so

n 1

( 1)n
1
2

n

km

s

2n

p p2n . (A-5)

If we make the change of variables

n

2n 2

(l 0
n 1)

pl , (A-6)

we can write that

kz kzo so (p 1) so (p 1) p
n 1

( 1)n
1
2

n

km

s

2n

n. (A-7)

2By definition,
m

n

m(m 1) (m n 1)

n!
.
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Next, if we add and subtract so p (p 1) on the right hand side of the preceding equation, we
obtain that

kz kzo so (p 1) so p (p 1) so (p 1) p
n 0

( 1)n
1
2

n

km

s

2n

n (A-8)

which can be simplified to

kz kzo so (p 1)(p 1) so (p 1) p
n 0

( 1)n
1
2

n

km

s

2n

n, (A-9)

and, furthermore, to

kz kzo so (p 1) 1 p 1
n 0

( 1)n
1
2

n

km

s

2n

n , (A-10)

and, finally, to

kz kzo so (p 1) 1 p
n 1

( 1)n
1
2

n

km

s

2n

n . (A-11)

If we make the reverse change of variables from p to s and so, we obtain the general Taylor
expansion form of the depth wavenumber used for the FFD migration method:

kz kzo 1
s

so n 1

( 1)n
1
2

n

km

s

2n

n (s so) . (A-12)

The equivalent 2nd order equation takes the form:

kz kzo 1
1

2

1

sso

km
2

2

1

8

1

sso

1

s2

1

sso

1

s2
o

km
4

4
(s so) .

We can write an analogous form for Equation (A-12) using a continuous fraction expansion

kz kzo 1
s

so n 1

km
s

2

an bn
km

s

2
(s so) . (A-13)

The equivalent 2nd order equation takes the form:

kz kzo 1
1

sso

km
2

2

2 1
2
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1
sso

1
s2
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km
2

2

(s so) .
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APPENDIX B

This appendix is a step-by-step derivation of the generalized screen equation.

I begin with the single square root equation for the true slowness (s)

kz
2s2 km

2,

and for the background slowness (so)

kzo
2so

2 km
2.

We can replace kzo in kz to get

kz kz
2
o

2 s2
o s2 , (B-1)

or, in an equivalent form,

kz kzo 1
2 s2

o s2

kz
2
o

.

Next, we can write a Taylor series expansion, assuming a small slowness squared pertur-
bation s2 s2

o

kz kzo
n 0

( 1)n
1
2

n

2 s2
o s2

kz
2
o

n

.

The 2nd order approximation takes the form:

kz kzo
1

2

2

kzo
s2

o s2 1

8

2

kzo

2

s2
o s2 2

.

We can make kzo explicit for the terms of the sum and obtain

kz kzo
n 0

( 1)n
1
2

n

2s2
o

2s2
o km

2

s2
o s2

s2
o

n

, (B-2)

from which we can derive the generalized screen migration equation:

kz kzo kzo
n 1

( 1)n
1
2

n

2s2
o

2s2
o km

2

s2
o s2

s2
o

n

. (B-3)

Because Equation (B-3) becomes unstable when the denominator of the terms in the sum-
mation vanishes, we replace these terms with another Taylor series expansion:

kz kzo kzo
n 1

( 1)n
1
2

n
i 0

( 1)i 1

i

km
2

( so)2

i
s2

o s2

s2
o

n

. (B-4)
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We can obtain the split-step equation through a sequence of approximations in Equa-
tion (B-4): first, we limit the terms of the inner Taylor series to two (i 1,2) and the terms of
the outer series to one (n 1), therefore

kz kzo kzo
1

2

( so)2

kz
2
o

1
s2

s2
o

,

which we can simplify to

kz kzo
1

2

2

kzo
s2

o s2 .

Next, we approximate kz o

1
so

and so s 2so, and get

kz kzo
1

2so
2so (so s) .

which reduces to the split-step equation

kz kzo (s so) .



226 SEP–105


