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A pattern-based technique for ground-roll and multiple
attenuation

Antoine Guitton, Morgan Brown, James Rickett, and Robert Clapp1

ABSTRACT

We present a pattern-based method that separates coherent noise from signal. This method
finds its mathematical foundation in the work conducted by Nemeth (1996) on coherent
noise attenuation by least-squares migration. We show that a similar inverse problem can
be formulated to attenuate coherent noise in seismic data. In this paper, we use deconvo-
lution with prediction error filters to model the signal and noise vectors in a least-squares
sense. This new formulation of the noise separation problem has been tested on 2-D real
data for ground-roll and multiple attenuations. So far, it achieves similar results to the
approach used by Brown and Clapp (2000) and Clapp and Brown (2000). However, we
show that the main strength of this new method is its ability to incorporate regulariza-
tion in the inverse problem in order to decrease the correlation effects between noise and
signal.

INTRODUCTION

This paper introduces a noise attenuation method based on the recognition of coherent events.
Because this method exploits the spatial predictability of the noise and signal with prediction
error filters (PEF), it belongs to the family of pattern-based techniques (Spitz, 2000; Brown and
Clapp, 2000). Pattern-based noise attenuation techniques are known for their ability to remove
coherent noise in the most complex geology (Guitton, 1999). They also assume advance
knowledge of a noise model, which might be rather difficult to derive in many situations.
However, in some circumstances, a noise model can be calculated. For example, we can
derive a multiple model using the “Delft approach” (Verschuur et al., 1992) in which the
multiple model is calculated via autoconvolution of the recorded wavefield. For ground-roll
attenuation, Brown et al. (1999) demonstrate that a satisfactory model can be obtained by
low-passing the data.

The recent pattern-based techniques in the literature are approximately equivalent to Wiener
optimal estimation (Castleman, 1996) since they utilize the PEF to approximate the signal and
noise power spectra. For instance, Spitz (2000) usesf − x domain PEF while Brown and
Clapp (2000) and Clapp and Brown (2000) uset − x domain PEF.
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In this report, Guitton (2001) presents a method that is not based on the Wiener recon-
struction of the signal but that still usest − x domain PEF. Following Guitton’s idea, we use
the PEFs as prediction operators as opposed to filtering operators in the Wiener approach.
Nonetheless, this method belongs to the pattern-based type since PEFs are still estimated
for the noise separation. Our goal is to show that this new methodology leads to a proper
attenuation of ground-roll and multiples, and has the potential to rival the classical Wiener
formulation.

In the first part of this paper, we briefly review the theoretical developments of both the
Wiener-like scheme and the new proposed technique, discussing their differences and sim-
ilarities. Then, we compare the two strategies applied to a 3-D shot gather infested with
ground-roll, and multiple-infested CMP gathers in a region of complex geology.

THEORY REVIEW

We present the theoretical basis for both the Wiener method and the new proposed scheme.
We show that our new method offers the opportunity to better separate noise from signal using
inverse theory.

Wiener-like method

A constrained least-squares problem using PEFs gives a similar expression for the noise es-
timation to the Wiener method. To see this, consider the recorded data to be the simple su-
perposition of signal and noise, that isd = s+ n. For the special case of uncorrelated signal
and noise, the so-calledWiener estimator, is a filter which when applied to the data, yields
an optimal (in a least-squares sense) estimate of the embedded signal (Castleman, 1996). The
frequency response of this filter is

H =
Ps

Pn +Ps
, (1)

wherePs andPn are the signal and noise power spectra, respectively.

Similarly, Abma (1995) solved a constrained least squares problem to separate signal from
spatially uncorrelated noise:

Nn ≈ 0

εSs ≈ 0 (2)

subject to ↔ d = s+n

where the operatorsN andSrepresentt −x domain convolution with nonstationary PEF which
whiten the unknown noisen and signals, respectively, andε is a Lagrange multiplier. Min-
imizing the quadratic objective function suggested by equation (2) with respect tos leads to
the following expression for the estimated signal:

ŝ=
(
NTN+ ε2STS

)−1
NTN d (3)
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By construction, the frequency response of a PEF approximates the inverse power spectrum of
the data from which it was estimated. Thus we see that the approach of equation (2) is similar
to the Wiener reconstruction process. We refer to this approach as a “Wiener-like” method.
It has been successfully used by Brown and Clapp (2000) for ground-roll attenuation and by
Clapp and Brown (2000) for multiple separation.

Subtraction method

In contrast to the Wiener-like method which filters the noise, the following method aims to
model the noise and then subtract it from the input data. In this section, we show that the
formalism used by Nemeth (1996) can help to better separate correlated noise and signal. But
first, we detail the similarities and differences between the Wiener-like and the subtraction
method.

In equation (2), the noise and signal PEFs filter the data components. Alternatively, build-
ing on Nemeth (1996), the noise and signal nonstationary PEF can predict the data components
via a deconvolution as follows:

d = N−1mn +S−1ms. (4)

We callms the signal model component andmn the noise model component (not to be con-
fused with the noise model that we use to compute the noise PEF). Clearly,N−1mn models
the noise vectorn andS−1ms the signal vectors. Because we use PEFs in equation (4), this
approach is pattern-based in essence. WithLn = N−1 andL s = S−1, using linear algebra, we
can prove that the least-squares solution ofms andmn is(

m̂n

m̂s

)
=

(
(L ′

nRsLn)−1L ′
nRs

(L ′
sRnL s)−1L ′

sRn

)
d, (5)

with

Rs = I −L s(L ′

sL s)
−1L ′

s,

Rn = I −Ln(L ′

nLn)−1L ′

n. (6)

The operatorsRs andRn can be seen as signal and noise filters respectively sinceL s(L ′
sL s)−1L ′

s
andLn(L ′

nLn)−1L ′
n are the data resolution operators for the signal and the noise, respectively.

In the appendix B, we give a geometrical interpretation for bothRs andRn.

The degree of orthogonality between the noise operatorLn and the signal operatorL s

restricts the existence of̂mn andm̂s in equation (5). If the two operators overlap completely,
the HessiansL ′

nRsLn andL ′
sRnL s are not invertible. If the two operators overlap only partially,

Nemeth (1996) proves that the separability of the signal and noise can be improved if we
introduce a regularization term. If we use a model space regularization (Fomel, 1997), we
have (

m̂n

m̂s

)
=

(
(L ′

nRsLn + ε2C′
nCn)−1L ′

nRs

(L ′
sRnL s+ ε2C′

sCs)−1L ′
sRn

)
d, (7)
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with Cn andCs the regularization operators for the noise modelmn and the signal modelms.
A data space regularization can also improve the separation but will not be considered here.

In equation (4), the outcome of the inversion ismn andms. The estimated signals̃ is then
easily derived as follows:

s̃= d−N−1mn. (8)

We call this new method the subtraction method. In the next two sections, we compare the
Wiener-like approach and the subtraction method for ground-roll and multiple attenuation.

Approximating the signal PEF

In this section, we describe a method that computes the signal PEF needed in equations (2)
and (4). Spitz (1999) showed that for uncorrelated signal and noise, the signal PEF can be
expressed in terms of 2 PEF’s: a PEFD, estimated from the datad, and a PEFN, estimated
from the noise model such that

S= DN−1. (9)

Equation (9) states that the signal PEF equals the data PEF deconvolved by the noise PEF.
Spitz formulated the problem in thef − x domain, but the helix transform (Claerbout, 1998)
permits stable inverse filtering with multidimensionalt − x domain filters.

COHERENT NOISE ATTENUATION RESULTS

We present coherent noise attenuation results when ground-roll and multiples are present in
the data. These results prove that at this stage, the subtraction technique compares favorably
to the Wiener-like method. So far, we did not incorporate a regularization term as suggested
above.

Attenuation of ground-roll

The first test aims to attenuate severely aliased hyperbolic ground-roll. The shot gather in
Figure 1a comes from a 3-D land acquisition survey in Saudi Arabia. This shot gather has
been previously used by Brown et al. (1999) and Fomel (2000). With this field example,
because the noise and the signal span distinct frequency bandwiths, the ground-roll may be
attenuated by applying a high-pass filter. However, Fomel (2000) shows that the separation in
that case is far from optimal. Nonetheless, a low-pass filtering of the data gives an excellent
ground-roll model that can be later used for the coherent noise attenuation. Figure 1b shows
the noise model obtained with a bandpass filter. We added random noise to the noise model in
order to stabilize the PEF inversion. We then estimated the noise PEFsN from this model.

After building the noise model, we performed the coherent noise attenuation using the two
preceding schemes (equations (2) and (4)). The PEF and patch sizes are different in the two
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cases. With this dataset, we noticed that a larger PEF was needed in the subtraction scheme.
The number of iterations needed in the PEF estimation and in the final inversion is the same
for both methods. The parameters used in the Wiener-like technique are directly taken from
Brown et al. (1999) and correspond to the best possible combination of parameters for an
optimal separation of the noise from the signal.

Figure 2 shows the result of the noise attenuation for both methods. The two panels look
similar and both show that the ground-roll has been correctly separated from the signal. Figure
3 shows the estimated noise computed by subtracting the signal in Figure 2 from the input data
in Figure 1a. We see that the subtraction did a better job at preserving the signal because few
coherent events remain outside the ground-roll cone in the estimated noise panel in Figure 3a.

Attenuation of multiples

We use the very popular Gulf of Mexico line provided by WesternGeco. In the middle of the
seismic section shown in Figure 4, the data contain a shallow salt body which generates strong
reverberations and diffractions. This dataset is frequently utilized to benchmark multiple at-
tenuation techniques.

The multiple model was calculated in the shot domain using a non-recursive version of the
SRME technique developed by Delft (Verschuur et al., 1992). We describe how we created
the multiple model in the appendix A [equation (16)]. In few words, the goal of our modeling
algorithm is to generate a kinematically correct multiple field. Therefore, there is no attempt
to compensate for source signature effects. Indeed, our hope is that the attenuation scheme is
robust enough to cope with significant amplitude errors in the multiple model. Figure 5 shows
a comparison between one recorded shot gather on the right, and the multiple model for the
same shot location on the left. This shot is taken at the vertical of the salt body. The kinematics
of the input data, displayed in the right-hand panel of Figure 5, are accurately reproduced in
the multiple model (left-hand panel of Figure 5). The missing energy at near offset in the
multiple model results from the lack of short offset traces. Out-of-plane effects might affect
the accuracy of the model considerably. In addition, the limited aperture of the recording
geometry may cause modeling problems when dipping beds are present in the subsurface
(Guitton, 1999).

The multiple prediction is done in the shot domain, but our multiple attenuation scheme
was tested in the CMP domain. The next two sections present multiple attenuation results for
one CMP gather outside the salt boundaries and one over the salt body.

Figure 6a shows a CMP gather extracted from the Gulf of Mexico dataset, outside the
salt boundaries, and infested with multiples. Figure 6b shows the multiple model at the same
location. The main patterns are accurately modeled but the relative amplitudes of high-order
multiples are not preserved. The multiple attenuation starts by estimating the PEF for the
data and the noise model. The PEF coefficients are then smoothed along radial directions to
stabilize their inversion (Clapp et al., 1999). Then, the noise attenuation begins with either
equation (2), for the Wiener-like method, or equation (4), for the subtraction scheme. Figure
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Figure 1: (a) Ground-roll contaminated shot gather. (b) The ground-roll model used to com-
pute the noise PEFN (low pass filter of a, plus random noise).antoine2-dune[ER]
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Figure 2: (a) The estimated signal using the subtraction scheme. (b) The estimated signal
using the Wiener-like method. Both results are very similar.antoine2-dune-signal[ER]
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Figure 3: (a) The estimated noise using the subtraction scheme. (b) The estimated signal
using the Wiener-like method. Less coherent noise is left outside the ground-roll cone for the
subtraction method.antoine2-dune-noise[ER]
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Figure 4: Zero-offset section of the Gulf of Mexico data showing strong water-column multi-
ples below 3.5 seconds.antoine2-zero-offset[ER]

7 displays the result of the multiple attenuation using both methods. The multiples have been
correctly attenuated in the two cases. Figure 8 shows the difference between the input data
and the multiple-free gather using both methods. The two noise attenuation schemes lead to
very similar results.

For the last multiple attenuation result of this paper, we extracted a CMP gather over the
salt body. Multiple attenuation becomes more challenging because the salt body generates
strong internal multiples, diffractions and shadow zones that are difficult to incorporate in the
noise model. Figure 9 shows the selected CMP gather inside the salt boundaries with the
corresponding multiple model. Despite the inherent difficulty of modeling subsalt multiples,
the kinematics of the multiples in Figure 9a look similar to those in Figure 9b. Figure 10
shows the estimated signal. As expected, the remaining signal is less coherent inside the salt
boundaries than outside. Nonetheless, the two schemes reveal hidden information in a similar
way. Figure 11 proves that once again, the coherent noise attenuation is comparable for both
methods.

CONCLUSION

We applied a newt − x domain, pattern-based signal/noise separation technique to a 2-D line
contaminated with multiples. This technique differs from the Wiener-like method because the
data components are not filtered but rather predicted. The goal of this work was to show (1)
that the noise attenuation can be formulated in a totally different way using a new fitting goal,
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Figure 5: Left: A multiple model at one shot location. Right: The shot record at the same
location. The multiple model matches the recorded multiples accurately.antoine2-comp
[CR]
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Figure 6: (a) A CMP gather infested with multiples, outside the salt boundaries. (b) The
multiple model at the same location.antoine2-inp-1[CR]
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Figure 7: (a) The estimated signal using the subtraction method. (b) The estimated signal
using the Wiener-like method. Both results are comparable.antoine2-sig-1[CR]
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Figure 8: (a) The extracted multiples using the subtraction method. (b) The extracted multiples
using the Wiener-like method. The noise attenuation is similar in both cases.antoine2-noiz-1
[CR]
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Figure 9: (a) A CMP gather infested with multiples, inside the salt boundaries. (b) The multi-
ple model at the same location.antoine2-inp-400[CR]
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Figure 10: (a) The estimated signal using the subtraction method. (b) The estimated signal
using the Wiener-like method.antoine2-sig-400[CR]
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Figure 11: (a) The extracted multiples using the subtraction method. (b) The extracted multi-
ples using the Wiener-like method.antoine2-noiz-400[CR]
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(2) that this new formulation leads to a proper subtraction of the noise components, and (3)
that so far, this method is comparable in efficiency to the Wiener-like method. The first results
are encouraging. Yet, we have not explored the possibilities offered by the regularization to
improve the signal-noise separation.
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APPENDIX A

SURFACE-RELATED MULTIPLE PREDICTION THEORY

This section details how multiples are generated by convolution of shot gathers. For a 1-
D earth, the convolution can be done directly in thef − k domain. For a 2-D earth, the
convolution becomes nonstationary. In addition, one convolution of the shot gathers tends to
overpredict high-order multiples. Ifp(g|s) represents a single frequency component of the
primary reflected wavefield recorded atg after an impulsive shot ats, then thefirst-order
surface-related multiple,m(g|s), can be computed with a Kirchhoff-style integral over the
reflection surface:

m(g|s) =

∫
p(g|g′) p(g′

|s) dg′. (10)

Equation (10) is expensive to evaluate, especially for large 3-D data sets, but nevertheless
widely-used for multiples modeling.

s

?

g’
g

?
Figure 12: The wavefield is emitted ats and recorded atg. The multiple bounces somewhere
at g′. antoine2-hombre[NR]

One-dimensional earth and impulsive source

Let’s defineu0 as the primary wavefield andu1 the surface-related, first-order multiple wave-
field recorded at the surface. If the earth varies only as a function of depth, thenu will not
depend on boths and g, but only on the offset,h = g − s. In this one-dimensional case,
equation (10) becomes

u1(g−s) =

∫
u0(g− g′) u0(g′

−s) dg′ (11)

u1(h) =

∫
u0(h−h′) u0(h′) dh′, (12)
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whereh′
= g′

− s. Equation (12) clearly represents a convolution, so can be computed by
multiplication in the Fourier domain such that

U1(kh) = U0(kh)2, (13)

whereUi (kh) is the Fourier transform ofui (h) defined by

Ui (kh) =

∫
ui (h) e−2π ikhhdh. (14)

Equation (13) can be extended to deal with a smoothly varying earth by considering common
shot-gathers (or common midpoint gathers) independently, and assuming the earth is locally
one-dimensional in the vicinity of the shot e.g., Rickett and Guitton (2000):

U1(kh,s) = U0(kh,s)2. (15)

Two-dimensional earth

In the general case, modeling multiples becomes more expensive. Equation (12) is not valid
anymore (except for smoothly varying media), and the convolution becomes nonstationary
(shot gathers are different from one location to another). Hence, the wavefield is not only a
function of offset,h, but also depends on another spatial coordinate such as shot locations.
Under this parameterization, equation (10) can be written as

u1(h,s) =

∫
u0(h−h′,s+h′) u0(h′,s) dh′. (16)

Now, following Dragoset and Jericevic (1998), we introduce some amplitude corrections in
the previous equation:

u0(h−h′,s+h′) = Ft→ω[
√

tu0(h−h′,s+h′,t)], (17)

u0(h′,s) = (1− i )

√
ω

4π
Ft→ω[

√
tu0g(h′,s,t)].

Limitations of the multiple prediction using real data

In the real life, the source is not impulsive. In addition, multiples are computed directly from
the data and not from the primary wavefield. Hence, the relative amplitude of first order
multiples with respect to higher order multiples is not preserved. To illustrate this last point,
consider the surface-related multiple modeling equation (Verschuur et al., 1992)

ur = u0 − W−1um, (18)

whereur is the recorded wavefield at the surface,W the source wavelet, andum the multiple
wavefield given by

um = u0 ⊗u0 − W−1u0 ⊗u0 ⊗u0 (19)

+W−2u0 ⊗u0 ⊗u0 ⊗u0 . . .

um = u1 +u2 +u3 + . . . (20)
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where⊗ represents the nonstationary convolution andui the i-th order multiples. If we use
equation (16), replacingu0 by ur , we obtain for the approximated multiple fieldũm

ũm = u1 +2u2 +3u3 + . . . (21)

Comparing equation (33) and equation (34), we notice that higher order multiples in equation
(34) are multiplied by a coefficient that is difficult to correct for. Therefore higher order
multiples have the correct kinematics, but the wrong amplitudes. Hence, our modeling scheme
explicitely overpredict high-order multiples (amplitude wise) but models them with the correct
pattern.
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APPENDIX B

GEOMETRIC INTERPRETATION OF THE NOISE AND SIGNAL FILTERS

In this section, we give a geometric interpretation of the noise and data filters which appear in
equation (5). The properties of the resolution operators are well known (Tarantola, 1987). Our
goal is to extend these properties to the particular case of the subtraction scheme proposed in
equation (5). But first, it is useful to give some definitions.

Definitions

We give a set of definitions that will help us to better understand the properties of the noise
and signal filters in equation (5).

Definition 1: an operatorP is a projector if

PP= P. (22)

Definition 2: two operatorsP andQ are complementary operators if

P+Q = I . (23)

Definition 3: two operatorsP andQ are mutually orthogonal if

PQ = QP = 0. (24)

Definition 4: the`2 norm of a vectorv is

‖v‖
2
=

∑
i

v2
i (25)

or

‖v‖
2
= v′v, (26)

where (’) is the adjoint.
Definition 5: two vectorsu andv are orthogonal if

u′v = v′u = 0. (27)

General properties of the noise and signal filters

Following the preceding definitions, we can define the noise and signal filters more precisely.
But first, remind that (

m̂n

m̂s

)
=

(
(L ′

nRsLn)−1L ′
nRs

(L ′
sRnL s)−1L ′

sRn

)
d,
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with

Rs = I −L s(L ′

sL s)
−1L ′

s,

Rn = I −Ln(L ′

nLn)−1L ′

n. (28)

Rs andRn are signal and noise filtering operators respectively. If we denote

Rs = I −Rs,

Rn = I −Rn. (29)

with Rs = L s(L ′
sL s)−1L ′

s andRn = Ln(L ′
nLn)−1L ′

n the signal and noise resolution operators,
we deduce thatRs andRs, Rs andRs are complementary operators (definition 2).

It can be shown thatRs, Rn, Rs andRn are projectors. ForRs andRs, we have

RsRs = L s(L ′

sL s)
−1L ′

sL s(L ′

sL s)
−1L ′

s,

= L s(L ′

sL s)
−1L ′

s,

RsRs = Rs, (30)

and

RsRs = (I −Rs)(I −Rs),

= I −2Rs+Rs,

RsRs = Rs. (31)

Thus,Rs andRs are projectors as defined in definition 1. The same proofs work forRn and
Rn.

We can prove thatRs andRs, Rn andRn are mutually orthogonal. ForRs andRs, we have

RsRs = (I −Rs)Rs,

= (Rs−Rs),

RsRs = 0. (32)

Hence,Rs andRs, Rn andRn are complementary, mutually orthogonal projectors.

Geometric interpretation

The operatorsRn andRs are the noise and signal resolution operators. They describe how
well the predictions match the noise and signal (Menke, 1989). In the following equations, we
consider that

Rnn = n (33)

and

Rss= s, (34)
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meaning that each component of the data has been predicted. These equalities will help us to
build a comprehensive geometric interpretation for the different operators. Based on equations
(33) and (34), we have for the data vectord the following equalities:

Rsd = Rsn+s

Rnd = Rns+n, (35)

and

Rsd = Rsn

Rnd = Rns. (36)

In the following equations, we prove that‖Rns‖2
+‖Rns+n‖

2
= ‖d‖

2:

‖Rns‖2
+‖Rns+n‖

2
= s′Rn

′
Rns+s′R′

nRns+s′R′

nn+n′Rns+

n′n

= d′Rnd+s′Rns+n′Rns+s′Rnn+ (37)

n′Rnn

= d′Rnd+d′Rnd

= d′d

‖Rns‖2
+‖Rns+n‖

2
= ‖d‖

2.

Similarly, we have‖Rsn‖
2
+‖Rsn + s‖2

= ‖d‖
2. If we use equations (35) and (36), the last

two equalities can be written as follows:

‖Rnd‖
2
+‖Rnd‖

2
= ‖d‖

2,

‖Rsd‖
2
+‖Rsd‖

2
= ‖d‖

2. (38)

Hence,Rnd, Rnd andd form a right triangle with hypotenused and legsRnd andRnd, as
depicted in Figure 13; similarly,Rsd, Rsd andd form a right triangle with hypotenused and
legsRsd andRsd. If n ands are orthogonal,s is in the null space ofRn andRnd = Rns= s
(Figure 14). Similarly,n is in the null space ofRs andRsd = Rsn = n.

Figure 13: A geometric interpretation
of the noise filter whenn andsare not
orthogonal. antoine2-geom11[NR]

R  dn s
d

nR  sn
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Figure 14: A geometric interpretation
of the noise filter whenn and s are
orthogonal. antoine2-geom21[NR]

s = R  dn

d

n



26 SEP–108


