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Solutions to data and operator aliasing with the parabolic radon
transform

Antoine Guittoh

ABSTRACT

Focusing in the radon domain can be affected by data and operator aliasing. Antialjasing
conditions can be imposed on the parabolic radon transform (PRT) operator by dip lim-
iting the summation path. These dip limits in time translate into frequency limits in|the
Fourier domain. Consequently, antialiasing the PRT enables better focusing in the radon
domain. If the radon domain is computeid inverse theory, a regularization term in e
ther the time or frequency domain can reduce data aliasing effects. The frequency domain
regularization has the advantage of being noniterative, but needs to be applied in patches
in order to improve focusing.

INTRODUCTION

The parabolic radon transform (PRT) is extensively used to transform the data into a domain
where multiples and primaries are separable. This multiple-attenuation method proceeds as
follows: the data are sorted in common midpoint (CMP) gathers, flattened with a normal
moveout (NMO) correction, and then radon transformed. The multiples are then muted in
the radon domain and subtracted from the input data. The final result depends heavily on the
mapping of the primaries and multiples in the radon domain.

The limited aperture of the recording geometry and the spatial data sampling might con-
siderably affect the separability of primaries and multiples (Kabir and Marfurt, 1999). This
data sampling issue is called data aliasing. It causes many artifacts that dramatically affect
focusing in the radon domain (Figure 2).

A second source of problem can stem from aliasing of the radon transform operator. The
operator aliasing creates noise in the radon domain by the summation action of the PRT oper-
ator on the CMP gather (Abma et al., 1999; Lumley et al., 1994).

In this paper, | present solutions to correct for both operator and data aliasing. We can
antialias the operator by imposing dip limitations on the summation path of the PRT. These
dip limits translate easily into frequency limits. | also show that when using inverse theory,
data-aliasing artifacts can be attenuated by imposing some constraints on the sparseness of the
radon domain.

lemail: antoine@sep.stanford.edu
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Figure 1: Left: A parabolic radon modes.km~2). Right: Data derived from the left panel
using the PRT (offset ikm). |antoine3-datasynfER]
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Figure 2: Left: The radon domain obtained by applying the adjoint BRI the input data
shown in Figure 1. The straight lines are caused by the limited aperture of the recording

geometry. The other noisy events correspond to data-aliasing noise. Right: Reconstructed
data applying the forward operatbrto the left panellantoine3-radofER]




SEP-108 Operator/data aliasing 3

ANTIALIASING THE PARABOLIC RADON TRANSFORM

Aliasing of the operator can be avoided if we limit the dips of the PRT summation path.
This dip filtering can be easily implemented in the Fourier domain, which results in a simple
frequency limit condition.

Computing the PRT in the Fourier domain

Prior to the dip filtering, however, it is necessary to compute the PRT in the Fourier domain,
rather than in the time domain. The equations that follow show a method for computing the
PRT in the frequency domain. In the time domain, the equation for a parabola is

t(q,x) =1 +0x°, (1)

wherer is the zero offset timex the offset, and) the curvature of the parabola. The modeling
equation, which superposes on parabolas, from the radon domain to the CMP domain is

dtx) = > > m(z,q)8(z — (t —ax?)), 2)
T q
and the adjoint transform, which sums along parabolas, is
m(z,q) = sz(t,x)a(t — (T + ). (3)
X
We can easily transform these equations in the Fourier domain as follows:
dw,x) = Y mge i, (@)
q
Mw,q) = Y dw,x)e ", (5)
X

With w constant, equations (4) and (5) describe a simple matrix multiplication with the oper-
atorL:

Lix = e ot (6)

Hence, we can write equations (4) and (5) in the following more familiar way for each fre-
quency:

d = Lm, (7)
m = L'd, 8)

wherelL’ is the adjoint ofL. | have computed the radon and offset domains in Figure 2 using
equations (7) and (8). The following is a possible algorithm for computing the radon domain:

e Fourier transform the data.
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e For each frequency, starting from the lowest to the highest, solve equation (8).

e Inverse Fourier transformn.

Because we can comput@seudeinverse forL noniteratively in the Fourier domain (Kostov,
1989), the PRT is generally not computed in the time domain.

Antialiasing conditions for the PRT operator

Antialiasing the operator is equivalent to dip-filtering the operator. The anti-aliasing condi-
tions can be written (Abma et al., 1999) as

1

= AT )

fmax
whereAT is the local slope of the operator between two adjacent traces. For the PRT, we can
compute the local slope as follows:

AT = M@X) (10)

X
AT = 2gXxAX, (11)

whereAXx is the input trace spacing. The antialiasing condition becomes

1

fmax < m, (12)
T

) 13

Wmax = 2qXAX (13)

The antialiasing condition in equation (13) is then implemented in the Fourier domain. Figure
3 shows how the antialiasing works in the data space when the adjoint of thelLPRE (
applied to the model in Figure 1: parabolas broaden with offset as a result of the dip filtering.
Thus, the antialiasing operator generates a loss of resolution. We now apply the antialiasing
operator to the CMP gather shown in the right-hand panel of Figure 1. The radon domain in
Figure 4 (as compared with that in Figure 2) has been cleaned up with a loss of resolution.
However, because we apply an antialiasing operator with aliased data, we are left with aliasing
noise near = 0s/kn?. This aliasing noise is caused by the aliasing of the non-flat events in
the CMP domain. We can mitigate these artifacts by introducing some constraints in the radon
domain as a function of the expected aliased dips in the data (Biondi, 1998), but this is not
considered here. Nonetheless, we see that the use of an antialiasing operator with aliased
data is worthwhile. In addition, cleaning up the aliasing artifacts for a gighparticularly
interesting when multiples are present in the data. Indeed, multiples, often aliased in the CMP
domain, map in regions of higlhwhere the antialiasing operator is the most efficient.

In the next section, | investigate the effects of the antialiasing operator when the radon
domain is derived with a least-squares approach.
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Figure 3: Effects of antialiasing
in the data space. The parabolas
broaden with offset as a result of
the low-pass filtering for largeys.
antoine3-data_spikenkER]
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Figure 4: Left: The parabolic radon domain after use of the antialising condition. The aliasing
artifacts have decreased. Right: The reconstructed data after the forward operator is applied

to the left panellantoine3-nodl[ER]
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Operator antialiasing and least-squares inversion

The PRT in the Fourier domain allows us to derive a least-squares estimate of the data in
the radon domain. Equations (7) and (8) suggest the use of inversion to recover the original
amplitude in the data. In computing the pseudo-inverse of the matiwo cases need to be
distinguished.

The under-determined case:The least-squares inverseraffor each frequency is

Munder = L'(LL " +€1)71d, (14)
whererh is the estimate of the modell’ + ¢l a matrixnx x nx to invert, ande = o2/ 2.
The over-determined caseThe least-squares inverse farfor each frequency is

Mover = (L'L +€l)71L"d, (15)

whereL’L +€l is ang x nq matrix to invert with a Toeplitz structure (Kostov, 1989; Darche,
1990).

An interesting problem occurs when the conditioning of the matrix quickly deteriorates as
frequencies increase. This effect is partly caused by the frequency truncation of the operator.
A solution to this problem is to increasgwhich appears in equations (14) and (15), with the
frequency. To do so, | set

€, =log(n, +1)* B, (16)

wheren,, is the index of the computing frequency afié constant to setpriori. This choice
of ¢, allows us to increase the regularization with the frequency but not too much. Indeed a
too strong regularization would affect the amplitude recovery of the data.

The size of the matrix to invert makes possible the use of direct inversion as opposed to
iterative processes. Figure 5 shows the result of inversion using the aliased operator. The
aliasing artifacts are still strong, but some energy has focused, decreasing the width of the
horizontal events caused by near-offset aperture effects. The resulting data, which appear in
the right panel of Figure 5, are almost perfectly recovered. The residual in the left panel of
Figure 7 demonstrates that the data fitting is nearly perfect.

Now, using the antialiasing conditions on the operator, we obtain the data in Figure 6:
events are better focused in the radon domain and most of data aliasing artifacts have dis-
appeared. We observe a loss of resolution for the non-flat events caused by the antialiasing
conditions. The aliasing of the input data produces the remaining noisy events in the radon
domain. Again, the data in the right panel of Figure 6 are almost completely recovered, and
the residual in the right panel of Figure 7 is very small.

This result proves that the antialiasing PRT can be inverted as longs gsovided. It also
proves that the use of antialiasing conditions on the operator helps to mitigate data aliasing
artifacts. However, as Figure 6 indicates, data aliasing effects can'’t be totally removed. The
next section shows that sparseness conditions in the radon domain can destroy data aliasing
artifacts.
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Figure 5: Left: The parabolic radon domain after least-squares inversion. The events of in-
terest are more focused, but the aliasing artifacts remain. Right: The reconstructed data; the
result is nearly perfectantoine3-inval[ER]

REMOVING DATA ALIASING ARTIFACTS

Inverse theory offers an attractive framework for designing solvers that will enforce sparse-
ness in the radon domain (Sacchi and Ulrych, 1995; Nichols, 1994). These solvers impose
focusing in the model space by adding a regularization term in the objective function, which
then penalizes small values. This section presents two methods that address data aliasing. One
method is generally used in the time domain, and the other is specifically designed to work in
the frequency domain (Herrmann et al., 2000). For data examples of the time domain method,
the reader can refer to Guitton (2000) and Nichols (1994). Synthetic and real data examples
of the frequency domain method follow my description of it.

The time domain approach

The sparse solver in the time domain employs a regularization term that enforces spikyness
in the model space (Nichols, 1994). This approach is well-suited for time-domain processing
and makes use of iterative solvers as opposed to direct inversion as described in equations (14)
and (15). For instance, by choosing an approximation of¢theorm for the model space
regularization, we can focus the energy of the model veegtdnto its main components.
Ulrych et al. (2000) advocate a regularization by the Cauchy-Gauss model. In any case, the



8 Guitton SEP-108

radon domain cmp domain

Figure 6: Left: The parabolic radon domain after inversion of the antialiasing operator. The
events are more focused and the aliasing artifacts have been weakened. We see a loss of
resolution caused by the antialiasing conditions. The aliasing of the input data produces the
remaining noisy events. Right: The reconstructed datatoine3-invna[ER]
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Figure 7: Left: Residual for the aliased operator with least-squares inversion. Middle:
Input data. Right: Residual for the antialiasing operator with least-squares inversion.
antoine3-comp[ER]

objective function to minimize becomes
f(m)=|Lm _d||2+€|m|sparse (17)

where|.| is the¢2 norm and wherg.|sparseinduces a sparse model. Iteratively reweighted
least-squares algorithms with the proper weighting function produce an artifact-free model
space (Bube and Langan, 1997). A more ambitious Huber norm can be used as well (Guitton
and Symes, 1999) for the case.

The frequency domain approach

In contrast, the method developed by Herrmann et al. (2000) computes an approximation
of the model covariance matrix in the Fourier domain. The main idea is to use the result
of the inversion, as shown in equations (14) and (15), at one frequency as a weight for the
next frequency. Consequently, this method takes advantage of the fact that the data are not
aliased at low frequencies. Hence, the information from the lowest frequencies to the highest
is transmitted and used to improve the focusing in the model space. | call this method the
steering-weighting matrices method. It has the advantage of working noniteratively.

Taking this approach, starting fromm= wmin Up to®w = wmax, We begin with the two fitting
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goals for each frequency

0 ~ I—wmw_da)a (18)
0 ~ &¥aw 2m,, (19)

where the diagonal matriw/ has components

W, =M, 4], (20)
with W,,.... = |. The division in equation (19) can be avoided if we ng/lz as a precondi-
tioning operator (Fomel, 1997). Then, omitting thewe obtain

0 ~ LWY¥%x—d, (21)
0 ~ el/zx, (22)

with x = W~2m. The estimate of the model can be written as follows:

h =WL'(LWL ' +¢l)~1d, (23)
or equivalently as

h=(L'L+ew H 1L d. (24)

Equation (23), used in the under-determined case, is clearly easier to compute because we do
not have to calculaté/—1. Since in practice we often have to deal with more unknowns than
data points, | use equation (23) in the following examples.

Results with the frequency domain approach

| implemented this method with synthetic and real data. The synthetic case perfectly attenuates
the aliasing artifacts. The real data case is not as convincing however, because we have a dense
information in the data space to interpret with few parabolas in the model space.

The result with synthetic data is striking (Figure 8): all the artifacts have disappeared,
leaving a clean model space. The data are almost entirely recovered. Figure 9 displays the
diagonal elements of the mati¥ at each frequency. We can see that from the lowest to the
highest frequencies, the diagonal elements focus at four different locations corresponding to
the four parabolic curvatures present in the input data. The cut-off at 70 Hz which corresponds
to the highest frequency component present in the data, is used to calculate the model space.

With real data, however, the results suggest strategies to better focus the radon domain.
Figure 10 shows the inversion of one CMP gather in the parabolic radon domain when no
attempt were made to focus the model space components, that is, no weight in equation (23).
The residual is displayed in the right panel of Figure 12. Although the inversion produces
a satisfactory fitting of the input data, some aliasing artifacts appear in the radon domain.
Figure 11 displays the result of the inversion using the steering-weighting matrices. It shows
that fewer artifacts appear in the radon domain. A comparison of the residual with and without



SEP-108 Operator/data aliasing 11

(s)owry

radon domain cmp domain

Figure 8: Left: Model space using the steering matrices. Right: Data reconstructed from the
left panel. The aliasing artifacts are gone, and the focusing in the model space is perfect.
antoine3-spikea[ER]
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Figure 9: Diagonal elements of the

weighting matrix W at each fre- 75
guency. The four stripes correspond 2
to the location of the four curva- @%
tures in the radon domain. The cut- 9
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weight , shown in Figure 12, demonstrates that the data fitting is satisfactory for both cases. It
turns out that the crucial parameterijs | don’t have any guideline for choosing it but trial

and error. The efficiency of the steering-weighting matrices method is based on the number
of parabolic events present in the data. The best results are achieved when few events have to
be focused in a large radon domain. However, since for real data cases this requirement may
be difficult to meet, | anticipate no or few improvements if we use this method. One solution
may be simply to apply it to different patches as suggested by Herrmann et al. (2000).
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Figure 10: Left: A radon domain obtained using inversion without steering matrices. Right:
The reconstructed data@ntoine3-nmo2[ER]

CONCLUSION

The inversion of the PRT can be done quickly in the Fourier domain using a least-squares
inverse. Employing an antialiasing operator helps focus more precisely in the radon domain.
| demonstrated that data aliasing effects can be eliminated using a sparse solver in the time

or frequency domain. The frequency domain solution, however, may need to be applied in
patches.
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Figure 11: Left: A radon domain obtained using inversion with steering matrices. Right: The
reconstructed dataantoine3-nmol[ER]

Figure 12: Left: Residual of the inversion in Figure 10 using the steering matrices. Mid-
dle: Input data. Right: Residual of the inversion in Figure 11 without the steering matrices.
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