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Narrow-azimuth migration: Analysis and tests in vertically
layered media

Biondo Biondi1

ABSTRACT

Analysis of common-azimuth migration for vertically layered media shows that down-
ward continuing the data in a narrow strip around the zero crossline offset should yield a
kinematically correct migration scheme. I introduce two migration methods that exploit
the common-azimuth equations to define an optimal range of crossline-offset wavenum-
bers and thus to minimize the number of crossline offsets that are necessary to sample
adequately the crossline-offset dips. Tests on synthetic data generated assuming a verti-
cally layered medium confirm the theoretical analysis and suggest further testing on data
sets with complex velocity functions.

INTRODUCTION

Common-azimuth is an attractive alternative to shot-profile migration for wave-equation 3-D
prestack migration. It is computationally more tractable (Biondi and Palacharla, 1996) and it
can easily generate Angle-Domain Common Image Gathers (ADCIG) (Prucha et al., 1999).
In the past few years, we have shown that it produces good images both with challenging
synthetic data (SEG/EAGE salt data set) (Biondi, 2000) and real data (Vaillant et al., 2000).
However, in variable velocity, common-azimuth migration is not exact. In this paper, I gener-
alize common-azimuth migration to overcome this limitation, following some of the ideas that
we previously explored (Vaillant and Biondi, 1999, 2000). My aim is to define a method that
is accurate in presence of arbitrary velocity variations.

I attack the problem by studying the simple case of vertically layered media, because
the general case is difficult to analyze and numerical tests are expensive. On the contrary,
in layered media, I can easily analyze the accuracy limitations of common-azimuth migration
with the help of raytracing modeling and a synthetic data set modeled over five dipping planes.

I compare “raytracing migration” of an event with both the correct dispersion relation and
its common-azimuth approximation. This analysis of the kinematics is consistent with the
migration results of the synthetic data. It confirms previous results that even in the worst-
case scenario for common-azimuth migration, (reflector’s dip oriented at 45 degrees with re-
spect to the acquisition geometry, and one reflections path close to overturn) the kinematics of
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common-azimuth migration are a good approximation of the kinematics of the exact migra-
tion.

The raytracing modeling also confirms that the departure of the exact raypaths from the
common-azimuth assumption is small. For the particular example analyzed, the maximum
crossline offset at depth is less than 200 m, when the full inline offset is 2.9 km. These results
suggest that a narrow-azimuth extension to common-azimuth should be capable of handling
correctly all the events in the data.

I thus define and test two narrow-azimuth schemes. Both schemes downward continue the
data along a narrow crossline-offset strip, and take advantage of the common-azimuth equa-
tions to define the proper range of crossline-offset dips. The adaptation of the first schemes
to lateral velocity variations is straightforward, and thus it is a good candidate for future tests
on data with complex velocity. The second scheme is less affected by artifacts caused by the
boundaries along the crossline-offset axis. It may have potential for fast and accurate migra-
tion when the velocity is only slowly varying as a function of the horizontal coordinates.

Tests on the synthetic data show that a narrow crossline-offset range (e.g. four or even two
crossline offsets) is sufficient to obtain accurate migration results of the most steeply dipping
(60 degrees) reflector in the synthetic data. These encouraging results suggest further test on
more challenging data.

ANALYSIS OF COMMON-AZIMUTH MIGRATION ERRORS

Kinematics of common-azimuth migration are only approximately correct when the veloc-
ity varies. The errors are related to the departure of the reflected events wavepaths from the
common-azimuth geometry. This phenomenon can be easily understood by analyzing the
raypaths of reflections. Figure 1 shows an example of raypaths for an event bouncing off a
reflector dipping at 60 degrees and oriented at 45 degrees with respect to the offset direc-
tion. The offset is equal to 2.9 km, and the velocity function isV (z) = 1.5+ .5z km/s. The
projections of the rays on the crossline plane clearly show the raypaths departure from the
common-azimuth geometry. Notice that the source ray (light gray) is close to overturn. A
dipping reflector oriented at 45 degrees with rays close to overturn is the worst-case scenario
for common-azimuth migration.

The event modeled with raytracing can also be imaged using raytracing by a simple process
that I will identify as raytracing migration. Starting from the initial conditions at the surface
given by modeling, both the shot and the receiver rays are traced downward until the sum of
their traveltimes is equal to the traveltime of the reflected event. When raytracing migration is
performed using the exact equation derived from an asymptotic approximation of the double-
square root equation, the rays are exactly the same as the rays shown in Figure 1. On the
contrary, if the common-azimuth approximation is introduced in the raytracing equations, the
rays will follow the paths shown in Figure 2. As expected, the projections of the rays on the
crossline plane overlap perfectly, confirming that the rays follow a common-azimuth geometry.
However, in Figure 2 it is also apparent that the common-azimuth rays do not meet at the
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ending points. This discrepancy in the kinematics causes errors in the migration. To connect
the kinematic analysis with migration errors, I migrated a data set with similar characteristics
as the events analyzed above. This data set was created by Louis Vaillant (Vaillant and Biondi,
2000). Data were generated using SEPlibKirmod3d program. The reflectivity field consists
of a set of five dipping planes, from zero dip to 60 degrees dip. The azimuth of the planes
is 45 degrees with respect to the direction of the acquisition. The velocity wasV (z) = 1.5+

.5z km/s, which roughly corresponds to typical gradients found in the Gulf of Mexico. The
maximum source-receiver offset was 3 km. Figure 3 shows the geometry of the reflectors.

Figure 4 shows a subset of the migration results. The front face of the cube displayed
in the figure is an inline section through the stack. The other two faces are sections through
the prestack image as a function of the offset ray parameterpxh . This migration results were
obtained by including all the appropriate weighting factors, as discussed by Sava and Biondi
(2001), including the phase shift and weights related to the stationary phase approximation.

Figure 5 shows an individual ADCIG gather from the same migrated image shown in Fig-
ure 4. The three events in the figure correspond to the planes dipping at 30, 45 and 60 degrees.
Notice that the events are almost perfectly flat as a function of the offset ray parameterpxh ,
except for the reflections from the 60 degrees dipping plane with large offset ray parameters
(i.e. large reflection angle). Figures 1- 2 show the rays corresponding to one of these events;
in particular the one corresponding topxh=.00045 s/m. Figure 6 shows the three orthogonal
projections of these rays. The black (blue in colors) rays are the exact rays, while the light
gray (cyan in colors) rays are the common-azimuth rays for the same events recorded at the
surface. The solid (red in colors) dot corresponds to the imaging location for the common-
azimuth migration. It is at the midpoint between the end points of the two rays. It is deeper
than the correct one by1z=48 m, and laterally shifted by1x=-56 m and1y=-2 m. How-
ever, at fixed horizontal location, the dot is shallower by1z−plane=-21 m than the reflecting
plane. This is about the same vertical shift that is observable on the corresponding event in the
ADCIG gather shown in Figure 5.

The maximum crossline offset of the exact rays is about 200 m. This maximum offset
occurs at the intersection between the crossline offset ray parameter (pyh) curves shown on the
top-right panel in Figure 6. This small value for the maximum crossline offset, compared with
the inline offset, suggests the that event could be exactly downward continued by expanding
the computational domain in a narrow strip around the zero crossline offset. However, to
minimize the number of crossline offsets needed to adequately sample the crossline-offset
dips (pyh), it is important to define an optimal range ofpyh that is not symmetric around the
origin. In the next section I will discuss how to use the common-azimuth migration equations
for defining such a range.

To evaluate the importance of not centering the range ofpyh at zero, I migrated the data
assumingpyh = 0 for all events, and I also performed the corresponding raytracing migration.
Figure 7 shows the same ADCIG gather as in Figure 5, but extracted from the image obtained
assumingpyh = 0. In this gather the events are significantly frowning down. Furthermore, no
image is present for the largerpxh . For example, the deeper reflector is not imaged at the ray
parameter corresponding to the event represented in Figures 1- 2 (pxh=.00045 s/m). The lack
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Figure 1: Ray corresponding to an event reflected by a reflector dipping at 60 degrees and
oriented at 45 degrees with respect to the offset. The offset is 2.9 km offset, andpxh=.00045
s/m. The velocity function isV (z) = 1.5+ .5z km/s. Notice the small, but finite, crossline
offset of the rays at depth. Also notice that the source ray (light gray) is close to overturn.
biondo1-sem1[CR]
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Figure 2: Equivalent common-azimuth rays for the same event shown in Figure 1. The
common-azimuth rays are similar to the true rays shown in Figure 1, but the end points do
not meet, causing a misspositioning of the migrated image.biondo1-sem2[CR]
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Figure 3: Geometry of the set of
slanted planes, dipping at 0◦, 15◦,
30◦, 45◦ and 60◦ towards increasingx
andy, at 45◦ with respect to the inline
direction. biondo1-planes[NR]
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of images is readily explained with raytracing. If the conditionpyh = 0 is introduced in the
raytracing equations one of the rays tends to overturn shallower than the true rays. Figure 8
shows the raytracing migration corresponding topxh = .000325s/m, one of the larger values
of pxh for which an event could be raytraced without neither of the rays overturning. The
rays traced assumingpyh = 0 (light-gray lines) are clearly far from the correct rays (black
lines). Figure 9 shows the corresponding common-azimuth raytracing migration for the same
event (pxh = .000325s/m) and offset 2.35 km. As for Figure 1, the solid dot corresponds
to the imaging location for the common-azimuth migration. For common-azimuth migration
the errors are much smaller than forpyh = 0, and about half than in Figure 6. The dot is
deeper than the correct one by1z=22 m, and laterally shifted by1x=-23 m and1y=-4 m. At
fixed horizontal location, the dot is shallower by1z−plane=-9 m than the reflecting plane. This
is about the same vertical shift observable on the corresponding event in the ADCIG gather
shown in Figure 5.

Figure 4: Subset of the results of
common-azimuth migration of the
synthetic data set. The front face of
the cube is an inline section through
the stack. The other two faces are
sections through the prestack image.
This migration results were obtained
by including all the appropriate
weighting factors, including the
phase shift and weights related to
the stationary phase approximation.
biondo1-CA-pull-WKBJ-stat-vp
[CR]
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Figure 5: An ADCIG extracted from
the same migrated image shown in
Figure 4. The three events in the
figure correspond to the planes dip-
ping at 30, 45 and 60 degrees. Notice
that the events are almost perfectly
flat except for the large offset ray
parameters (i.e. large reflection an-
gle) of the 60 degrees dipping plane.
biondo1-CIG-CA-pull-WKBJ-stat-cig
[CR]
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Figure 6: Orthogonal projections of rays shown in Figure 1 and Figure 2. The imaging point
of common-azimuth migration (solid, red in colors, dot) is deeper than the correct one by
1z=48 m, and laterally shifted by1x=-56 m and1y=-2 m. However, the dot is shallower by
1z−plane=-21 m than the plane at the same horizontal location. This vertical shift is consistent
with the shift observed in the ADCIG gather shown in Figure 5. The maximum cross-line
offset of the exact rays is about 200 m.biondo1-sem3[CR]
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Figure 7: An ADCIG extracted from
the migrated image obtained by
assumingpyh = 0 during downward
continuation. The three events
in the figure correspond to the
planes dipping at 30, 45 and 60
degrees. Notice that the events are
frowning down and that no image
is present at large ray parameters.
biondo1-CIG-PS-1-nhy-WKBJ-stat-cig
[CR]
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Figure 8: Orthogonal projections of rays tha are traced downward assumingpyh = 0 and
corresponding topxh=.000325 s/m and 2.35 km offset.biondo1-sem6[CR]
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Figure 9: Orthogonal projections of rays for the same event as in Figure 8, but the rays are
traced downward assuming common-azimuth geometry (1z=22 m,1x=-23 m,1y=-4 m, and
1z−plane=-9 m). biondo1-sem5[CR]

TWO SCHEMES FOR NARROW-AZIMUTH MIGRATION

The kinematic analysis presented in the previous section suggests a generalization of common-
azimuth migration based on the downward continuation of a narrow strip around the zero
crossline offset. The computational cost of such a generalization is obviously proportional
to the number of crossline offsets used to represent this narrow strip. The width of the strip
is dependent on the reflector geometry and on the velocity model, but the sampling depends
on the crossline-offset dip spectrum. To minimize the cost it is crucial to define an optimal
criterion to define the range of crossline-offset dips (pyh). As demonstrated in the previous
section, for dipping reflectors the dip spectrum is not centered around the zero dip (pyh = 0),
and thus a symmetric range would be wasteful. I exploit the information provided by the
common-azimuth equation to define a range of crossline-offset dips. For this reason I named
my generalization narrow-azimuth migration, even if narrow crossline-offset would be a more
accurate name.

The common-azimuth equation provides the crossline-offset dippyh as a function of the
other dips in the data when the data are propagated along a constant azimuth (Biondi and
Palacharla, 1996). In the frequency-wavenumber domain the common-azimuth relationship
is:

k̂yh = kym
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whereω is the temporal frequency,kxm andkym are the midpoint wavenumbers,kxh andkyh are
the offset wavenumbers, andv(s,z) andv(s,z) are the local velocities. Ideally we would like to
define a range ofkyh that is varying with depth, as a function of the local velocities. However,
that may lead to complex implementation. For the moment I chose a simpler solution. I define
a range ofkyh by setting a minimum velocityvmin and a maximum velocityvmax, and define
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The disadvantage of this solution is that the choice ofvmin andvmax is somewhat arbitrary.

The central point of thekyh range is then defined as a function ofkmin
yh

andkmax
yh

as

Skyh =
kmax

yh
+kmin

yh

2
, (4)

and the range as

Skyh −

(
Nyh

2
−1

)
dkyh ≤ kyh ≤ Skyh +

Nyh

2
dkyh , (5)

whereNyh is the number of crossline offsets anddkyh is the sampling inkyh .

The two narrow azimuth schemes that I propose and tested differ in the definition of the
crossline-offset wavenumber samplingdkyh . The first, and simplest, uses a constant value for
dkyh ; that is

dkyh1 =
2π

Nyh1yh
. (6)

The second one allowsdkyh to vary as

dkyh2 =
kmax

yh
−kmin

yh

Nyh

. (7)

Varying dkyh is equivalent to vary the width of the crossline-offset strip, and, at constantNyh ,
is also equivalent to vary the sampling1yh. At lower frequenciesdkyh is smaller, and thus the
maximum crossline offset is larger. The migrated results benefit because the lower frequencies
are the most affected by boundary artifacts and a wider strip reduces the artifacts caused by
the boundaries. On the contrary, as the frequency increases,dkyh is larger and1yh smaller,
and thus spatial aliasing is avoided.

The main disadvantage of this second scheme is that the transformation between space
and wavenumber domains becomes more cumbersome. Mixed space/wavenumber domain
downward-continuation methods (Biondi, 1999) become more expensive, and thus the scheme
becomes less attractive when the velocity is laterally varying.
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Migration tests

I run both narrow-azimuth migration methods on the synthetic data set described above, vary-
ing the number of crossline-offset samplesNyh from 2 to 16. To create data with more than
one crossline offset I padded the common-azimuth data with zeros. I also run a full phase-shift
3-D prestack migration on the same data. Full phase-shift 3-D prestack migration is equivalent
to the first method of narrow-azimuth migration, but with thekyh range centered atkyh = 0,
instead of at theSkyh given by equation (4).

For both the full phase-shift migration and the first narrow-azimuth methods, I kept the
maximum value of the crossline offset constant at 800 m for all values ofNyh . Therefore,
according to equations (6) and (5) the sampling rate ofkyh was independent ofNyh , but the
range ofkyh decreased asNyh decreased. Both methods lose accuracy as the range ofkyh

decreases, but the accuracy of full phase-shift migration degrades quicker than the accuracy of
narrow-azimuth migration.

For all of these tests I used all the appropriate weighting factors, as discussed by Sava and
Biondi (2001), except the phase shift and weights related to the stationary phase approxima-
tion. I excluded the stationary phase correction because as the range ofkyh increases it is not
anymore necessary. Indeed, the phase of the migrated images changes as theNyh increases.
However, the amplitude of the deeper reflectors decreases asNyh increases because of the
increasing amount of zero padding.

Figure 10 shows the the results of full phase-shift migration of the synthetic data set with
Nyh = 16. It shows the same subset of the migrated cube as in Figure 4. The front face
of the cube is an inline section through the stack. The other two faces are sections through
the prestack image. The kinematics of the migration are correct. The events are flat in the
ADCIG shown in Figure 11. I use this results as benchmark for the narrow-azimuth and the
full phase-shift migration asNyh decreases.

Figures 12 shows two ADCIGs, taken at the same location as the ADCIG in Figure 11, but
obtained withNyh = 8. The ADCIG on the left (a) was obtained by full phase-shift migration,
and the ADCIG on the left (a) was obtained by the first method for narrow-azimuth migration.
For narrow azimuth-migration I usedvmin = 1.8 km/s andvmax = 2.1 km/s. The kinematics
of the narrow-azimuth migration are correct. On the contrary, the results of full phase shift
migration begin to degrade at largerpxh .

Figures 13 and 14 shows the same ADCIGs as in Figure 12, but with respectivelyNyh = 4
and Nyh = 2. The kinematics of the narrow-azimuth migration are correct forNyh = 4 and
show only a slight degradation at largepxh for Nyh = 2. On the contrary, the results of full
phase shift migration are poor even at smallpxh .

Finally, I compare the results of using the two methods for narrow-azimuth migrations that
I presented in the previous section. Figure 15 shows the ADCIGs taken at the same location as
in Figure 12, also obtained withNyh = 8. The ADCIG on the left is obtained using the second
narrow-azimuth method; that is, when using equation (7) to determine the sampling rate for
kyh . The ADCIG on the right is obtained using the first narrow-azimuth method; that is, when
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using equation (6) to determine the sampling rate forkyh . The kinematics of the two images
are equivalent. However, the image obtained using the second method has less artifacts caused
by the boundaries along the crossline-offset axis.

CONCLUSIONS

In vertically layered media, reflected events have a limited crossline offset at depth even in
the worst-case scenario for common-azimuth geometry. This result confirms the robustness of
common-azimuth migration and leads to its generalization obtained by downward continuing
the data in a narrow strip around the zero crossline offset. Both narrow-azimuth migration
methods that I propose in this paper achieve high efficiency by exploiting the common-azimuth
equations to define an optimal range of crossline-offset wavenumbers.

Tests on synthetic data generated assuming a vertically layered medium show that very few
(2 or 4) crossline offsets are needed to obtain migrated images with the correct kinematics.
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Figure 10: Subset of the results
of full phase-shift migration of the
synthetic data set withNyh = 16.
The front face of the cube is an
inline section through the stack.
The other two faces are sec-
tions through the prestack image.
biondo1-PS-16-nhy-WKBJ-vp
[CR]

Figure 11: An ADCIG extracted
from the same migrated image shown
in Figure 10. The three events in
the figure correspond to the planes
dipping at 30, 45 and 60 degrees. No-
tice that the events are perfectly flat.
biondo1-CIG-PS-16-nhy-WKBJ-cig
[CR]
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Figure 12: ADCIGs extracted from the migrated image obtained withNyh = 8 for a) full-phase
shift migration, and b) narrow-azimuth migration.biondo1-CIG-both-8[CR]

Figure 13: ADCIGs extracted from the migrated image obtained withNyh = 4 for a) full-phase
shift migration, and b) narrow-azimuth migration.biondo1-CIG-both-4[CR]
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Figure 14: ADCIGs extracted from the migrated image obtained withNyh = 2 for a) full-phase
shift migration, and b) narrow-azimuth migration.biondo1-CIG-both-2[CR]

Figure 15: ADCIGs extracted from the migrated image obtained withNyh = 8 for a) narrow-
azimuth migration withdkyh from equation (7), and b) narrow-azimuth migration withdkyh

from equation (6). biondo1-CIG-8-uneven[CR]


