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Multiple realizations: Model variance and data uncertainty

Robert G. Clapp1

ABSTRACT

Geophysicists typically produce a single model, without addressing the issue of model
variability. By adding random noise to the model regularization goal, multiple equi-
probable models can be generated that honor somea priori estimate of the model’s
second-order statistics. By adding random noise to the data, colored by the data’s co-
variance, equi-probable models can be generated that give an estimate of model uncer-
tainty resulting from data uncertainity. The methodology is applied to a simple velocity
inversion problem with encouraging results.

INTRODUCTION

Risk assessment is a key component to any business decision. Geostatistics has recognized
this need and has introduced methods, such as simulation, to attempt to assess uncertainty
in their estimates of earth properties. Geophysics has been slower to recognize this need, as
methods which produce a single solution have long been the norm.

The single solution approach, however, has a couple of significant drawbacks. First, be-
cause least-square estimates give invert for the minimum energy/variance solution, our models
tend to have low spatial frequency than the true model. Second, it does not provide informa-
tion on model variability or provide error bars on the model estimate. Geostatisticians have
both of these abilities in their repertoire through what they refer to as “multiple realizations”
or “stochastic simulations.” They introduce a random component, based on properties of the
data, such as variance, to their estimation procedure. Each realization’s frequency content is
more representatitve of the true model’s and by comparing and contrasting the equiprobable
realizations, model variability can be assessed.

In previous works (Clapp, 2000, 2001), I showed how we can modify standard geophysical
inverse techniques by adding random noise into the model styling goal to obtain multiple
realizations. Claerbout (1998) shows how an estimate of the correct scaling for the random
noise can be obtained for the missing data problem. In this paper, I extend this early work.
I show how we can modify the data fitting goal in a parallel manner achieving a potentially
more significant result. By adding random noise colored by the inverse data covariance, we can
obtain multiple model estimates that show how data uncertainty map to model uncertainty. In
terms of velocity estimation we can rephrase this relation as how our uncertainty in semblance
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picks affects our estimate of interval velocity.

In this paper I begin by reviewing the methodology of adding noise to the model styling
goal. I show why and when the methodology is effective. I then show how we can encode
data uncertainty into our model estimation. I conclude by demonstrating both techniques on
simple 1-D and 2-D tomography problems.

REVIEW: INCORPORATING MODEL VARIANCE

In Clapp (2001), I began with the standard geophysical problem, a linear relationshipL be-
tween a modelm andd, with a regularization operatorA, written in terms of fitting goals
as:

0 ≈ d−Lm (1)

0 ≈ εAm.

To produce models with appropriate levels of variance we modify the second goal, replacing
the zero vector0 with standard normal noise vectorn, scaled by some scalarσm,

0 ≈ d−Lm (2)

σmn ≈ εAm.

For the special case of missing data problem, Claerbout (1998) shows how to get an approxi-
mate value forσm. This paper suggests we first solve the simple problem described by

d ≈ Im , (3)

whereI is the identity matrix and we do not allow them to change at known locations. For
example, let’s assume that as our input we have the data in Figure 1. We estimate a model
using the fitting goal (3) and obtain Figure 2. We then look at the residualsrdata at known
locations, Figure 3. The variance of the residual should have the same variance as the random
noise in (2). We can the estimate many different models by applying,

0 ≈ d−Jm (4)

σmn ≈ εAm,

whereJ is a selector matrix, 1 at known locations, 0 elsewhere, andA is a Prediction Error
Filter (PEF) estimated from the known data locations. Figure 4 shows three such realizations.

Comparison to geostatistics

The most common method to create models that the honor both first and second order statistics
is geostatistical simulation. A comparison between the method presented in this paper and the
standard geostatistical technique is therefore warranted.
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Figure 1: A wood texture from Claer-
bout (1998) with a hole removed
to simulate a missing data problem.
bob1-wood.hole[ER]

Figure 2: The result of solving a
missing data problem using the data
in Figure 1 as input, a PEF found
from the known data locations, and
fitting goal (3). bob1-wood.pef
[ER,M]

Figure 3: Left panel is the his-
togram of the known data locations
shown in Figure 1. The right panel
is the histogram of the residual at
the same known locations after ap-
plying fitting goal (3). Note how
the almost uniform distribution of the
data approaches a normal distribu-
tion. bob1-wood.histo[ER,M]

Figure 4: Three realizations using fitting goals (4) and the input data shown in Figure 1.
bob1-wood-multi [ER,M]
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For the comparison I will begin by describing the general procedure in sequential Gaussian
simulation. First, some decision on stationarity is made. The known data is transformed to a
new function that is standard normal. The covariance is described through variograms. Each
point in the model space is randomly visited. At each point they find the best linear combi-
nation of known data, and points previously estimated through kriging (Isaaks and Srivastava,
1989), based on the predetermined variogram model. At the same time they calculate a kriging
variance, which can be considered a measure of the uncertainty of the estimated value based
on the surrounding points. A random number is then selected from a distribution function that
has the calculated kriging mean and variance.

Each step in the geostatistical simulation procedure has a corollary in an operator based
simulation. We begin by making a decision on stationarity. If the problem is non-stationary, we
can break the problem into patches (Claerbout, 1992) (what geostatiscians call “distinct sub-
zones” ) or we can use a non-stationary covariance description (Clapp et al., 1997; Crawley,
2000) (geostatisticians use kriging with external drift to allow some degree of non-stationarity).
We transform into a space that is Gaussian (if we have an accurate description of the model’s
covariance function, the residual space will have a Gaussian distribution). The operator ap-
proach solves a global, rather than a local, problem. The kriging estimate corresponds to our
PEF estimated with a0 in the model styling residual. Finally, the kriging variance corresponds
to the variance of the residual in the PEF estimation.

Uses

Introducing model variance into the estimation process has several attractive properties. For
missing data problems, we can produce models that have a more realistic texture and behave
more accurately when used as inputs as for processes such as fluid flow. We can quickly test
the accuracy of our covariance description by applying

mtest = A−1σmodel(n+ rdata), (5)

wheremtest is our estimated model. Figure 5 shows the application of (5) to the Seabeam es-
timation problem (Claerbout, 1998; Crawley, 1995). With the correct covariance description,
we get a believable estimate; the incorrect description gives a far less satisfactory answer.

When we have a more complex mapping operator, introducing model variability can help
us understand the null space of our mapping operator. This can be potentially interesting
for understanding Amplitude Versus Offset (AVO) effects from standard velocity estimation
techniques (Mora and Biondi, 1999, 2000).

What the method doesn’t address is a potentially more interesting question: how does data
uncertainty map to model uncertainty? In the next section, I will propose a methodology for
addressing this issue.
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Figure 5: A fast way to check PEFs. The left is the input data. The center panel shows the
result of applying fitting goals (5) with a reasonable covariance description. The right shows
the result using an unrealistic covariance description.bob1-fast [ER,M]

DATA UNCERTAINTY

To understand the method that I am proposing, let’s begin by rewriting our standard fitting
goals. We normally write

d ≈ Lm (6)

0 ≈ εAm.

We can rewrite these, adding our model variance information as

d ≈ Lm (7)

σnn ≈ εAm,

or put another way

0 ≈ d−Lm (8)

0 ≈ εA(m+mu),

whereAmu = −σnn is the model variability not characterized byA.

There is a corollary way to think about data variance. Normally we limit our characteri-
zation of data covariance to a diagonal matrix often referred to as the weight operatorW. A
more appropriate choice is the data covariance matrix. We can rewrite our system of equations
and add in an appropriate level of data variance:

0 ≈ W(d+du −Lm ) (9)

0 ≈ εA(m+mu).
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Or potentially more conveniently as a cascade of two operators

W = DH, (10)

whereD is a diagonal weighting matrix used before, andH is the normalized data inverse
covariance matrix, which we could characterize through a filtering operation.

Given this formulation we can define perturbeddnew through

dnew = d+W−1σdn, (11)

whereσd is our data variance. Assuming appropriate choices forD andH, the data for realiza-
tion will have the correct structure, something that would happen if we simply added random
noise to the data vector.

SUPER DIX

To test the methodology, I will return to the Super Dix example (Clapp et al., 1998; Rosales,
2000; Clapp, 2000). In 1-D we write the Super Dix fitting goals as

0 ≈ W (d−CCp) (12)

0 ≈ εp,

whereC is causal integration, the data is thed(i )
∑i

j v
2
rms( j ), our model isv2

int = Cp, and
we do not allow the model estimate to change at the first time sample. For this example, I
approximated the inverse data covariance by a simple derivative in time. Figures 6 and 7 show
the effect of introducing model and data variance. Note how, as expected, increasing model
variance (Figure 6) produced higher frequency interval velocity estimates, but the general
trends of the curves are preserved. When increasing data variance (Figure 7), we maintain
approximately the same smoothness, but our estimate of approximate layer velocities change.

2-D example

We can extend the basic 1-D formulation into 2-D. We redefine our data by

d1 = d−CCv0, (13)

whered1 is our new data array andv0 is an array containing our zero time velocity at each
Common Midpoint (CMP) location. The end result of equation (13) is to remove the zero
frequency component of our model. Our fitting goals change to

d1 ≈ CMA −1p (14)

0 ≈ εp,
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Figure 6: Effect of changing the
model variance on interval velocity.
bob1-model-var[ER,M]

Figure 7: Effect of changing the
data variance on interval velocity.
bob1-data-var[ER,M]
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whereM is a masking operator that doesn’t allow our velocity estimate to change at zero time
andA−1 is our model covariance estimate. After estimatingp we can convert back to interval
velocity through

vint =

√
Cv0 +A−1p. (15)

The modifications to the original fitting goals is necessary because of the constraint that we do
not change our velocity att = 0. In the 1-D case, we didn’t have to worry about our change of
variable fromv2

int to p because our preconditioned operator did not modify the zero time. In
the 2-D case ourA−1 operator can introduce smoothness laterally as well as vertically, forcing
us to modify our inversion scheme in order to take advantage of the preconditioning speed up.

To test the methodology I chose the relatively simple Gulf of Mexico dataset provided by
Western and used in Claerbout (1995). Figure 8 shows a near offset section from the data. I
performed semblance analysis and chose a fairway within which all validvrms picks would
fall (Figure 9). For each CMP, I automatically picked the maximum semblance at each time
within the fairway (Figure 10). For my diagonal operatorD, I used the amplitude of the
semblance at the pickedvrms (left panel of Figure 11) and then scaled by 1/t to correct ford
being the result of summing operation. Figure 12 shows the result of estimating an interval

Figure 8: Near offset section of a Gulf of Mexico dataset.bob1-beidata[ER]

velocity without adding any model variance or data uncertainty. Figure 13 shows two different
realizations for the interval velocity adding model variability. I estimated a PEF from myvrms

picks and used filtering with that PEF forH and polynomial division with it forH−1. For my
data variance I used the width of the picked semblance block (the right panel of Figure 11).
Note how, as expected, the variance generally increases with depth. For my different data
realizations I applied equation (14). Figure 14 shows two different realizations of the interval
velocity using the data with the added uncertainty.
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Figure 9: Semblance analysis for a
CMP from the data shown in Fig-
ure 8. Overlaid is the fairway used by
the automatic picker.bob1-fairway
[ER]

Figure 10: The automatically picked
velocities for each CMP within the
fairway shown in Figure 9. Over-
layed are smoothed contours for the
same field.bob1-rms[ER]
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Figure 11: The left panel is the amplitude of the semblance at eachvrms shown in Figure 10.
The right panel is the approximate width of the corresponding semblance blob at the same
location. Overlaid on the right plot are contours for the same field.bob1-range-wt[ER,M]

Figure 12: The result of estimating
for an interval velocity from thevrms

picks in Figure 10 without adding any
model variance or data uncertainty.
Overlaid are contours for the same
field. bob1-int [ER]
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Figure 13: Two different realizations for the interval velocity adding model variability. Over-
laid are contours for the same fields.bob1-model-var-dix2d[ER,M]

Figure 14: Two different realizations for the interval velocity adding data variability. Overlaid
are contours for the same fields.bob1-data-var-dix2d[ER,M]
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CONCLUSIONS

I have demonstrated a method for creating equiprobable realizations that shows how data un-
certainty affects model uncertainty.
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