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Adaptive multiple subtraction with non-stationary helical
shaping filters

James Rickett, Antoine Guitton, and Douglas Gratwick

ABSTRACT

We suppress surface-related multiples with a smart adaptive least-squares subtraction
scheme in the time-space domain after modeling multiples with a fast but approximate
modeling algorithm. The subtraction scheme is based on using a linear solver to estimate
a damped non-stationary shaping filter. We improve convergence by preconditioning with
a space-domain helical roughening filter.

INTRODUCTION

Both surface-related and internal multiples are a major source of coherent noise in many basins
throughout the world. Dragoset and denic (1998) describe a two-step multiple elimination
process: prediction based on the Delft autoconvolution model (Merschuur et al., 1992), fol-
lowed by subtraction with an adaptive noise cancellation (ANC) algorithm. However, prac-
tical multiple removal by adaptive noise cancellation is significantly more complex than the
one-dimensional theory described in the text books [e.g. Widrow and Stearns (1985)]. In par-
ticular the multidimensional nature of prestack seismic data leads to ambiguity in the choice
of potential parameters.

This paper describes an alternative to the conventional ANC algorithm also based on the
minimum energy criterion. However, our approach leverages helical preconditioning to en-
sure the non-stationary shaping filters vary smoothly, and do not accidentally remove primary
energy. In our description, we place particular emphasis on determining a robust set of param-
eters for the process.

THEORY

A canonical time series analysis problem (Robinson and Treitel, 1980) is that of shaping filter
estimation: given an input time seribsand a desired time seridswe must compute a filter,

f, that minimizes the difference betwelerb andd. Optimal filter theory provides the classical
solution to the problem by finding the filter that minimizes the difference in a least-squared
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sense, i.e. minimizing

2
Z ij bi—j—di . (1)
j

With the notation thaB is the matrix representing convolution with time seiesve can
rewrite this desired minimization as a fitting goal [e.g. Claerbout (1998a)],

Bf —d~0, 2)
which leads us to following system of normal equations for the optimal shaping filter:
B'Bf =BT d. (3)

Equation (3) implies that the optimal shaping filterjs given by the cross-correlation bf
with d, filtered by the inverse of the auto-correlationtofThe auto-correlation matrixg "B,
has Toeplitz structure that can be inverted rapidly by Levinson recursion.

For the multiple suppression problem, the vedarepresents the multiple infested raw
data, and the matri® represents convolution with the multiple model. Criterion (1) implies a
choice of filterf that minimizes the energy in the dataset after multiple removal.

One advantage with working with time-domain filters as opposed to frequency-domain
filters is that the theory can be adapted relatively easily to address non-stationarity. Following
Claerbout (1998a) and Margrave (1998), we extend the concept of a filter to that of a non-
stationary filter-bank, which in principle contains one filter for every point in the input/output
space. For a non-stationary filter-bafkywe identifyf; with the filter corresponding to thigh
location in the input/output vector, and the coefficiefy,, with thei th coefficient of the filter,

f;. The response of non-stationary filtering witto an impulse in thg ™" location in the input
is thenf;.

With a non-stationary convolution filtef, the shaping filter regression normal equations,
are massively underdetermined since there is a potentially unique impulse response associated
with every point in the dataspace. We need additional constraints to reduce the null space of
the problem.

For most problems, we do not want the filter impulse responses to vary arbitrarily, we
would rather only consider filters whose impulse response varies smoothly across the output
space. This preconception can be expressed mathematically by saying that, simultaneously
with expression (1), we would also like to minimize

2

(4)

2|2

Zrk fi j—k
k

where the new filter;, acts to roughen filter coefficients along the output axis of
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Combining expressions (1) and (4) with a parameténat describes their relative impor-
tance, we can write a pair of fitting goals

Bf—-d ~ 0, and (5)
eRf ~ 0. (6)

By making the change of variableg= Rf = S~f (Fomel, 1997), we obtain the following
fitting goals

BSq—d ~ 0, and (7
€eq ~ 0. (8)

which are equivalent to the normal equations
(S"TBTBS+e€) q=S"B" d. (9)

Equation (9) describes a preconditioned linear system of equations, the solution to which
converges rapidly under an iterative conjugate gradient solver.

APPLICATION TO A SYNTHETIC DATASET

We tested the algorithm on the 2-D BP multiple dataset which is based on a sub-salt play in
the deep-water Gulf of Mexico.

Although the modeling algorithm is not the focus of this paper, we modeled surface-
related multiples with a very fast 1-D algorithm. The multiple model was simply the multi-
dimensional autoconvolution of common midpoint (CMP) gathers (Kelamis and Verschuur,
2000). This auto-convolution reduces to a multiplication infittkedomain, and so it can be
performed rapidly with multi-dimensional FFT’s. More accurate multiple modelling algo-
rithms will better attenuate multiples associated with the dipping salt-flanks. However, in 3-D
examples, multiple prediction will always be imperfect, so we were interested in how this
algorithm would adapt under less than ideal conditions.

Figures 1 and 2 show common-midpoint and common-offset sections before and after
multiple suppression. With an imperfect multiple model, there is always a trade-off between
suppressing multiples and preserving primary energy. For these results, we took a conserva-
tive approach - although some multiple energy remains in the data, hopefully all the primary
energy remains too. In the areas with no salt present{@gx>10000 m), the multiples are
almost entirely eliminated. However, in areas below the salt, especially where steeply-dipping
diffracted multiples are present, some muliple energy remains.

PARAMETER CHOICES

Important practical considerations when solving equation (9) include the chai¢céhefnum-
ber of conjugate-gradient iterations, the choice of roughening filter, and the number and posi-
tion of adjustable coefficients in filtér
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Figure 1: CMP gather withmp_x=7000 m: (a) input gather, (b) gather after surface-multiple
attenuation, (c) modeled muliples, and (d) multiples that were remq‘;@dLesl-cmpmop
[CR,M]
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Choice ofe and number of CG iterations

In principle, the number of iterations should not be an important parameter since we should
iterate until the solution converges. However, determining the correct valaasod long-
standing difficulty with large exploration-type geophysical inverse problems. Conventional
solutions (Menke, 1989) such as picking the knee of misfit vs. model norm curves, or examin-
ing the singular-values of the operator matrix are not practical when the model-space is a large
multi-dimensional image. If the choice efis too small, the solution will begin to degrade as

the number of iterations increases as poorly resolved eigenvectors leak into the model space.
On the other hand, if the choice ofs too large, the solution will converge to a smooth model

that does not satisfy our first fitting goal [expression (7)].

Despite these difficulties, with preconditioned problems we often obtain good results after
only a few iterations without the solution fully converging, and with little or no dependence
on the the choice of. Well-resolved low-frequency eigenvectors propagate into the solution
quickly after only a few iterations.

Therefore, to reduce the dimensionality of the parameter space, we-$&t and keep the
filters smooth by restricting the number of conjugate-gradient iterations (Crawley, 1999). Af-
ter solving the problem only once, we can plot misfit vs. model norm curves for intermediate
solutions with varying number of iterations, and choose the best result.

Choice of roughening filter, R

The most important consideration in the choice of roughening filter is that it is easily invertible.

A Fourier domain roughener would meet this criterion; however, we apply a time-space oper-
ator that is both cheaper, and less prone to Fourier artifacts such as wrap-around and Gibbs’
phenomenom. Claerbout (1998b) describes how to construct invertible multi-dimensional
time-space operators by applying helical boundary conditions to the problem. Helical op-
erators cosO(N) operations to apply and invert rather th&{N logN) for an equivalent
Fourier operator.

For the results shown in this paper, we cho&sé¢o be the helical derivative operator
that roughens isotropically in the midpoint-time plane. A cascade of two one-dimensional
derivative filters first along the time axis and then along the midpoint axis also works well.
Anisotropic smoothing can be controlled by tweaking the “micropatch” parameters described
below.

Choice of non-stationary shaping-filter parameters

As described above, a non-stationary filter can have a different impulse response for each
point in the input/output space. For the non-stationary shaping filter estimation procedure, we
need to define which coefficients are adjustable for every individual impulse response. For
simplicity, we characterize each impulse response with the same set of adjustable coefficients:
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for the examples, shown here, they were one-dimensional non-causal symmetric filters about
180 ms long. Tests indicated that if the filters were shorter than the seismic wavelength,

the quality of the results decreased. Increasing filter length beyond this length, however, did

not alter results significantly, even in cases when the kinematics of the multiples were not

accurately predicted.

When implementing the non-stationary filters, it is not strictly necessary to force each point
of the input/output space to keep a unique impulse response. Rather, we apply the concept of
“micropatches” (Crawley, 2000), in which points within a small neighbourhood share a single
impulse response. This cuts computational memory requirements significantly, and provides
an alternative method of controling spatial and temporal variabilty of impulse responses.

CONCLUSIONS

We describe a robust methodology for adaptive noise cancellation, based on non-stationary
shaping filters and geophysical inverse theory. Helical preconditioning ensures the non-station-
ary shaping filters vary smoothly, preserving primary energy. Results on synthetic data show
that the algorithm successfully attenuates well-predicted multiples, and to a lesser extent
poorly-predicted multiples as well.
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