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Model-space vs. data-space normalization for recursive depth
migration

James Rickelt

ABSTRACT

lllumination problems caused by finite-recording aperture and lateral velocity lensing can
lead to amplitude fluctuations in migrated images. | calculate both model and data-space
weighting functions that compensate for these illumination problems in recursive depth
migration results based on downward-contination. These weighting functions can either
be applied directly with migration to mitigate the effects of poor subsurface illumination,
or used as preconditioning operators in iterative least-squa&sifigrations. Computa-
tional shortcuts allow the weighting functions to be computed at about the cost of a single
migration. Results indicate that model-space normalization can significantly reduce am-
plitude fluctuations due to illumination problems. However, for the examples presented
here, data-space normalization proved susceptible to coherent noise contamination.

INTRODUCTION

Migration is the adjoint of a linear forward modeling operator rather than the inverse [e.g.
Claerbout (1995)]. This means that, although migration treats kinematics correctly, the ampli-
tudes of migrated images do not accurately represent seismic reflectivity.

Geophysical inverse theory provides a rigorous framework for estimating earth models
that are consistent with some observed data. Typically the matrices involved in industrial-
scale geophysical inverse problems are too large to invert directly, and we depend on iterative
gradient-based linear solvers to estimate solutions. However, operators such as prestack depth
migration are so expensive to apply that we can only afford to iterate a handful of times, at
best.

In this paper | compute diagonal weighting functions that can be applied directly to mi-
grated images to compensate for the inadequacies of the adjoint with respect to seismic am-
plitudes. Furthermore, these weighting functions can be applied as preconditioning operators
that speed the convergence of iterative linear solvers, facilitating least-squares recursive depth
migration.

As well as looking at model-space weights, | also consider data-space weighting functions
derived from the operat@ A’ (whereA is our linear forward modeling operator), and develop
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a framework for computing and applying both model and data-space weights simultaneously.

MODEL-SPACE WEIGHTING FUNCTIONS

For an over-determined system of equations, the inverse problem can be summarized as fol-
lows - given a linear forward modeling operatorand some recorded dataestimate a model
m such thatAm ~ d. The model that minimizes the expected error in predicted data is given

by:
me = (A’A)"TA'd. (1)

To attempt to speed convergence, we can always change model-space variablagdrom
x through a linear operatdt, and solve the following new system for

d=APx=Bx. (2)

When we find a solution, we can then recover the model estinmate= Px. If we choose

the operatoP such thaB’B ~ |, then even simply applying the adjoii®’j will yield a good

model estimate; furthermore, gradient-based solvers should converge to a solution of the new
system rapidly in only a few iterations. The problem then becomes: what is a good choice of
pP?

Rather than trying to solve the full inverse problem given by equation (1), | look for a
diagonal operatow ,, such that

W?n A/d ~ Mpo. (3)

W, can be applied to the migrated (adjoint) image with equation (3); however, in their
review of L2 migration, Ronen and Liner (2000) observe that normalized migration is only a
good substitute for full (iterativel) 2 migration in areas of high signal-to-noise. In these cases,
W, can be used as a model-space preconditioner to thé 2ufiroblem, as described in the
introduction.

Claerbout and Nichols (1994) noticed that if we model and remigrate a reference image,
the ratio between the reference image and the modeled/remigrated image will be a weighting
function with the correct physical units. For example, the weighting funcifép, whose
square is given by

2 diag(mrer) ~ (A/A)_l, (4)

™7 diag(A’A Myer)

will have the same units as~1. FurthermoreW2 will be theideal weighting function if the
reference model equals the true model and we have the correct modeling/migration operator.

Equation (4) with forms the basis for the first part of this paper. However, when following
this approach, there are two important practical considerations to take into account: firstly, the
choice of reference image, and secondly, the problem of dealing with zeros in the denominator.
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Similar normalization schemes [e.g. Slawson et al. (1995); Chemingui (1999); Duquet et
al. (2000)] have been proposed for Kirchhoff migration operators. In fact, both Nemeth et al.
(1999) and Duguet et al. (2000) report success with using diagonal model-space weighting
functions as preconditioners for Kirchhdff2 migrations. However, normalization schemes
that work for Kirchhoff migrations are not computationally feasible for recursive migration
algorithms based on downward-continuation.

Three choices of reference image

The ideal reference image would be the true subsurface model. However, since we do not
know what that is, we have to substitute an alternative model. | experiment with three practical
alternatives, which | will denotm4, m,, andms.

Claerbout and Nichols (1994) attribute to Symes the idea of using the adjoint (migrated)
image as the reference model. The rationale for this is that migration provides a robust estimate
of the true model. As the first alternative | take Symes’ suggestion, saorthat A’d. The
second alternative is to try an reference image of purely random numiers:r, wherer
is a random vector. This is has the advantage of not being influenced by the data, but has the
disadvantage that different realizationsrahay produce different weighting functions. The
third alternative that | consider is a monochromatic reference inragedqonsisting of purely
flat events: literally flat-event calibration.

Stabilizing the denominator

To avoid division by zero, Claerbout and Nichols (1994) suggest multiplying both the numera-
tor and denominator in equation (4) diag(A’ A me), and stabilizing the division by adding
a small positive number to the denominator:
Wzm _ diag(mref)'diag(Az/A Mref) (5)
|diag(A’ A Myer)|“ + €2l
Although this does solve the problem of division by zero, the numerator and denominator will
still oscillate rapidly in amplitude with the phase of the image.

lllumination, however, should be independent of the wavefield’s phase. Therefore, | cal-
culate weighting functions from the ratio of the smoothed analytic signal envelopes (denoted
by <>) of the model-space images:

2 diag(< Myes >)
M diag(< A’Ampes >)+€2l’
wheree is a damping parameter that is related to the signal-to-noise level.

(6)

Numerical comparison

The Amoco 2.5-D synthetic dataset (Etgen and Regone, 1998) provides an excellent test for
the weighting functions discussed above.
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The velocity model (Figure 1) contains significant structural complexity in the upper
3.8 km, and a flat reflector of uniform amplitude at about 3.9 km depth. Since the entire
velocity model (“Canadian foothills overthrusting onto the North Sea”) is somewhat patho-
logical, | restricted my experiments to the North Sea section of the datasel(Q km). The
data were generated by 3-D acoustic finite-difference modeling of the 2.5-D velocity model.
However, making the test more difficult is the fact that the 2-D linear one-way recursive ex-
trapolators (Ristow and Ruhl, 1994) that | use for modeling and migration do not accurately
predict the 3-D geometric spreading and multiple reflections that are present in this dataset.

Figure 1. Velocity (in km/s) model used to generate the synthetic Amoco 2.5-D dataset.
james3-amocove|CR]

Figure 2 compares the migrated image J with the results of remodeling and remigrating
the three reference images described above. The imprint of the recording geometry is clearly
visible on the three remigrations in Figures 2 (b-d).

Figure 3 compares the illumination calculated from the three reference images with the
raw shot illumination. Noticably, the shot-only weighting function [panel (a)] does not take
into account the off-end (as opposed to split-spread) receiver geometry. Panel (b), the weight-
ing function derived from modeh,, appears slightly noisy. However, in well-imaged areas
(e.g. along the target reflector), the weighting function is well-behaved. Panel (c) shows the
weighting function derived from the random reference imageg)( Despite the smoothing,
this weighting function clearly bears the stamp of the random number field. A feature of white
noise is that no amount of smoothing will be able to remove the effect of the random numbers
completely. The final panel (d) shows the flat-event illumination weighting function, derived
from ms. This is noise-free and very well-behaved since it depends only on the velocity model
and recording geometry, not the data.

For a quantitative comparison, | picked the maximum amplitude of the 3.9 s reflection
event on the calibrated images. The normalized standard deviation (NSD) of these amplitudes
is shown in Table 1, where

NSD= |3 (% _ 1)2. @)

ix
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Figure 2: Comparison of calibration images: (a) original migration, (b) original migration
after modeling and migration, (c) random image after modeling and migration, and (d) flat
event image after modeling and migrati¢jame53-amocomiQ$CR,M]
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Figure 3: Comparison of weighting functions: (a) original migration, (b) original migration
after modeling and migration, (c) random image after modeling and migration, and (d) flat
event image after modeling and migratiojames3-amocowght§CR,M]
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Weighting function: NSD:

No weighting function 0.229
Shot illumination 0.251

Mref =M1 (Migrated image) 0.148
Mref =My (random image) | 0.195

Mt = M3 (flat events) 0.140

Table 1: Comparison of the reflector strength for different choices of illumination-based
weighting function.

Table 1, therefore, provides a measure of how well the various weighting function compensate
for illumination difficulties. The amplitudes of the raw migration, and the migration after flat-
event normalization are shown in Figure 4. This illustrates the numerical results from Table 1.:
for this model the normalization procedure improves amplitude reliability by almost a factor
of two.

1
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Figure 4. Normalized peak ampli-
tude of 3.9 km reflector after mi-
gration (solid line), and then nor-
malization by flat-event illumination
(dashed line) derived witef = ms.
The ideal result would be a constant
amplitude of 1. |james3-eventanip
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Computational cost

As it stands, the cost of computing a weighting function of this kind is twice the cost of a
single migration. Add the cost of the migration itself, and this approach is 25% cheaper than
running two iterations of conjugate gradients, which costs two migrations per iteration.

However, the bandwidth of the weighting functions is much lower than that of the mi-
grated images. This allows considerable computational savings, as modeling and remigrating
a narrow frequency band around the central frequency produces similar weighting functions
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than the full bandwidth. Repeating the first experiment{ = m;) with half the frequencies
gives a NSD= 0.147 - the same as before within the limits of numerical error.

DATA-SPACE WEIGHTING FUNCTIONS

If the system of equations, = Am, is underdetermined, then a standard approach is to find
the solution with the minimum norm. For the?2 norm, this is the solution to

M2 =A" (AA) " d. (8)

As a corollary to the the methodology outlined above for creating model-space weighting
functions, Claerbout (1998) suggests constructing diagonal approximatidms tay probing
the operator with a reference data vecthg. This gives data-space weighting functions of
the form,

2 diag(dre) ~ (AA/)_l, ©)

47 diag(AA drer)
which can be used to provide a direct approximation to the solution in equation (8),

Mo~ A’ W3d. (10)

Alternatively, we could us&V4 as a data-space preconditioning operator to help speed up
the convergence of an iterative solver:

Wyd = WgAm. (11)

Combining weighting functions
With two possible preconditioning operatoW¥,,, andWy, the question remains, what is the
best strategy for combining them?

The first strategy that | propose is to calculate a model-space weighting funatigrand
use it to create a new preconditioned system with the form of

d=AWnLXx=Bx.
Now probe the composite operatBr,for a data-space weighting function for the new system,

47~ diag(BB' dre) > +€ql BB’

(12)
The new data-space weighting function is dimensionless, and can be applied in consort with

the model-space operator. This leads to a new system of equations,

Wgd = WGgAWmX (13)
with m = WgX,
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with appropriate model-space and data-space preconditioning operators. The adjoint solution
to this system is given by

m=W2 A’ W3d. (14)

A second alternative strategy is the corollary of this: create a new system that is precon-
ditioned by an appropriate data-space weighting function, and then calculate a model-space
weighing function based on the new system.

Numerical comparisons

Again, the Amoco 2.5-D dataset provides an excellent test dataset for comparing flavors of
weighting function. Unfortunately the data-space weights proved susceptible to coherent noise
in the form of multiples not predicted by the modeling operator. While data-space weights did
improve the signal in poorly illuminated areas, they also boosted up the noise level causing an
increasein NSD. So further work will be required to make this approach useful.

DISCUSSION

While the methodologies described in this paper are valid for general linear operators, they
have several fundamental limitations. Most importantly, they require an accurate forward

modeling operator: both the physics of wave propagation and the true earth velocity must
be accurately modeled. While the physics of wave-propagation is broadly understood, earth
velocity models are never completely true-to-life.

Another important caveat is that the “wave-equation methods” outlined here require the
data and models to be represented on a regular grid. While we can choose our model-space,
prestack seismic data is never recorded on a perfectly regular grid. Before we can apply
any wave-equation technique (such as those described here), we need to regularize the data.
Chemingui (1999) and Fomel (2000) provide two different approaches to solving this problem.

CONCLUSION

Model-space weighting functions based on equation (6) provide a robust way to compensate
for illumination problems during recursive depth migration based on downward-continuation.
Data-space weights can be calculated either to work alone, or in consort with model-space
weights. However they are less robust to errors caused by inadequate forward modeling.
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