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A differential scheme for elastic properties of rocks with dry or
saturated cracks

James G. BerrymahSteven R. Pridéand Herbert F. Wang)

ABSTRACT

Differential effective medium (DEM) theory is applied to the problem of estimating phys-
ical properties of elastic media with penny-shaped cracks, filled either with air or liquid.
These cracks are assumed to be randomly oriented. It is known that such a model captures
many of the essential physical features of fluid-saturated or partially saturated rocks. By
making the assumption that the changes in certain factors depending only on Poisson’s
ratio do not strongly affect the results, it is possible to decouple the equations for|bulk
(K) and shear®@) modulus, and then integrate them analytically. The validity of this
assumption is then tested by integrating the full DEM equations numerically. The analyt-
ical and numerical curves for boh andG are in very good agreement over the whole
porosity range of interest. Justification of the Poisson’s ratio approximation is also|pro-
vided directly by the theory, which shows that, as porosity tends to 100%, Poisson’s|ratio
tends towards small positive values for dry, cracked porous media and tends to one-half
for liquid saturated samples. A rigorous stable fixed point is obtained for Poisson’s ratio,
v, of dry porous media, where the location of this fixed point depends only on the shape
of the voids being added. Fixed points occumat= 1/5 for spheres, and; >~ 7« /18
for cracks,a being the aspect ratio of penny-shaped cracks. Results for the elastic| con-
stants are then compared and contrasted with results predicted by Gassmann’s equations
and with results of Mavko and Jizba, for both granite-like and sandstone-like examples.

porosities. In contrast, the analytical approximations derived here give very satisfactory
agreement in all cases for bothandG.
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INTRODUCTION

The elastic moduli of rock are dependent on its mineral properties, porosity distribution, and
state of saturation. Two major theoretical approaches have been developed to address the prob-
lem of estimating elastic moduli from knowledge of rock constituents and microstructure. Ef-
fective medium theories, which include the classical bounds of Voigt (1928) and Reuss (1929)
and Hashin and Shtrikman (1961,1962) as well as estimates obtained from self-consistent
theories g.g, Hill (1965), Budiansky (1965), and Berryman (1980a,b)], require a parameter
characterizing the pore distribution. Alternatively, poroelastic constitutive equations (Biot,
1941; Gassmann, 1951) are phenomenological and do not require characterization of matrix
and pore space geometry. However, they contain the fundamental discrepancy that shear mod-
ulus is always independent of saturation state (Berryman, 1999). Although the lack of a shear
dependence on saturating fluid bulk modulus can be correct for special microgeometries and
very low modulation frequencies, this predicted lack of dependence is often contradicted by
high frequency experiments (abowvel kHz), and especially so in rocks with crack porosity.

As a result, Biot's theory has been modified in various ways. For example, Mavko and Jizba
(1991) partition porosity into “soft” and “stiff” porosity fractions to account for the change of
both bulk modulus and shear modulus with fluid saturation.

Recent comprehensive reviews of the literature on analysis of cracked elastic materials
include Kachanov (1992), Nemat-Nass¢ral. (1993), and Kushch and Sangani (2000), as
well as the textbook by Nemat-Nasser and Hori (1993). Some of the notable work on dry
cracked solids using techniques similar to those that will be employed here includes Zim-
merman (1985), Laws and Dvorak (1987), Hashin (1988), and Sayers and Kachanov (1991).
Pertinent prior work on both dry and saturated cracked rocks includes Walsh (1969), Budian-
sky and O’Connell (1976), O’Connell and Budiansky (1974, 1977), Henyey and Pomphrey
(1982), Hudson (1981, 1986, 1990), and Mavko and Jizba (1991).

The purpose of this paper is to obtain approximate analytical results for the elastic moduli
of dry and fully-saturated cracked rock based on Differential Effective Medium (DEM) theory
(Bruggeman, 1935; Cleast al,, 1980; Walsh, 1980; Norris, 1985; Avellaneda, 1987). Penny-
shaped cracks have been used extensively to model cracked materials (Walsh, 1969; Willis,
1980; Kachanov, 1992; Smyshlyaetal, 1993), but the penny-shaped crack model is itself
an approximation to Eshelby’s results (Eshelby, 1957; Wu, 1966) for oblate spheroids having
small aspect ratio. In order to obtain some analytical formulas that are then relatively easy
to analyze, a further simplifying assumption is made here that certain variations in Poisson’s
ratio with change of crack porosity can be neglected to first order. The consequences of this
new approximation are checked by comparison with nhumerical computations for the fully
coupled equations of DEM. The agreement between the analytical approximation and the full
DEM for cracked rock is found to be quite good over the whole range of computed porosities.
Justification for the approximation is provided in part by an analysis of the actual variation of
Poisson’s ratio and some further technical justifications are also provided in two appendices.

For simplicity, the main text of the paper treats materials having only crack porosity, and
we consider these models to be granite-like idealizations of rock. A third appendix shows how
the results of the main text change if the model is treated instead as a sandstone-like material
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having finite stiff porosity in addition to the soft, crack porosity.

DIFFERENTIAL EFFECTIVE MEDIUM THEORY

Differential effective medium theory (Bruggeman, 1935; Cleatryal, 1980; Walsh, 1980;
Norris, 1985; Avellaneda, 1987) takes the point of view that a composite material may be con-
structed by making infinitesimal changes in an already existing composite. There are only two
schemes known at present that are realizalde that have a definite microgeometry associ-
ated with the modeling scheme. The differential scheme is one of these (Norris, 1985; Avel-
laneda, 1987). This fact provides a strong motivation to study the predictions of this theory
because we can have confidence that the results will always satisfy physical and mathematical
constraints, such as the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1961; 1962).

When inclusions are sufficiently sparse that they do not form a single connected network
throughout the composite, it is appropriate to use the Differential Effective Medium (DEM) to
model their elastic behavior (Berge al, 1993). If the effective bulk and shear constants of
the composite ar& *(y) andG*(y) when the volume fraction of the inclusion phasg,ishen
the equations governing the changes in these constants are

dK* .
-T2 = [k - ko) P )
and
dG* |
a-nY =[e - w]Q” @

wherey is also porosity in the present case and the subscréinds for inclusion phase.
These equations are typically integrated starting from porgsiy0 with valuesK *(0) = K,
andG*(0) = G, which are assumed here to be the mineral values for the single homogeneous
solid constituent. Integration then proceeds frpm 0 to the desired highest valye= ¢, or
possibly over the whole range o= 1. When integrating this way, we imagine the result

is simulating cracks being introduced slowly into a granite-like solid. The same procedure
can be used for a sandstone-like material assuming this medium has starting pptosgity

with K*(¢9) = Ks and G*(¢p) = Gs. Integration then proceeds fropn= ¢o to y = 1. This
introduction of crack (or soft) porosity into a material containing spherical (or stiff) porosity
is conceptually equivalent to the porosity distribution model of Mavko and Jizba (1991). For
simplicity, we will treat the granite-like case here, but the changes needed for other applica-
tions are not difficult to implement, and are treated specifically in Appendix A.

The factorsP* andQ* appearing in (1) and (2) are the so-called polarization factors for
bulk and shear modulus. These depend in general on the bulk and shear moduli of both the
inclusion, the host medium (assumed to be the existing composite medinEM), and
on the shapes of the inclusions. The polarization factors have usually been computed from
Eshelby’s well-known results (Eshelby, 1957) for ellipsoids, and Wu’s work (Wu, 1966) on
identifying the isotropically averaged tensor based on Eshelby’s formulas. These results can
be found in many places including Berryman (1980b, 1995) and Maviah (1998).
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The special case of most interest to us here is that for penny-shaped cracks, where
K*+ %Gi

*i

= 3
Ki +%Gi +mTay* ®)
and
! 8G* Ki+3(Gi +G*
o =Ly Lo K 43( i ) | @
5 4G; + ma(G* + 2y*) Ki+3Gi +may*

with @ being the crack (oblate spheroidal) aspect ratio= G*[(3K* 4+ G*)/(3K* 4+4G™)],

and where the superscriptidentifies constants of the matrix material when the inclusion
volume fraction isy. This formula is a special limit of Eshelby’s results not included in
Wu’s paper, but apparently first obtained by Walsh (1969). Walsh’s derivation assumes that
Ki/Km << 1andG;/Gn, << 1, and makes these approximations before making assumptions
about smallness of the aspect ratio By taking these approximations in the opposite order,
i.e., letting aspect ratio be small first and then making assumptions about smallness of the
inclusion constants, we would obtain instead the commonly used approximation for disks.
But this latter approximation is actually inappropriate for the bulk modulus when the inclusion
phase is air or gas (for then the rakg/ K, << 1) or for the shear modulus when the inclusion
phase is any fluid (for the®; = 0), as the formulas become singular in these limits. This is
why the penny-shaped crack model is commonly used instead for rocks.

In general the DEM equations (1) and (2) are coupled, as both equations depend on both
the bulk and shear modulus of the composite. This coupling is not a serious problem for nu-
merical integration, and we will show results obtained from integrating the DEM equations
numerically later in the paper. But, the coupling is a problem in some cases if we want ana-
lytical results to aid our intuition. We will now present several analytical results for both bulk
and shear modulus, and then compare these results to the fully integrated DEM results later
on.

Some analytical results forK *

We now assume the inclusion phase is a fluikse= K andG; = Gs = 0. The fluid can be

either a liquid or a gas. We consider three cases: (1) liquid inclu¥ens> 7raym, (2) gas
inclusion: Ky << mwaym, (3) general inclusionKs >~ rayy. Case 1 corresponds to liquid
inclusions, Case 2 to gas inclusions, and Case 3 to a circumstance in which crack aspect ratio
is tuned to fluid modulus, or in which we do not want to limit ourselves to the assumptions of
either of the previous two cases.

Liquid inclusion: K; >> maym

In this limit, it is somewhat more convenient to rewrite the DEM equations in terms of com-
pliances, rather than stiffnesses, so we have

d 1 _ * - *f *\2 __ i_i
-9, (g ) =KWK P 2= (= 15 ) ©
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The only terms that couple the equations for bulk to shear have been readily neglected in
this case, sinc®* ~ K*/K;. Thus, we expect little if any deviation between the analytical
results and the full DEM for the liquid saturated case. We are treating here the granite-like
case such that the limit of zero inclusion volume fraction corresponis (@) = K, i.e., the

bulk modulus of the pure solid. Then, integrating (5) frgra- 0 toy = ¢ (¢ is the resulting
porosity in the composite medium) gives directly

1 1 1 1
(E-2)- )

which may be rearranged as
1 1 1 1
———)=l———— 0. 7

Eqn. (7) can also be obtained as the smdiinit of Gassmann’s equation when the saturat-
ing fluid is a liquid. Gassmann’s result for the bulk modulus (Gassmann, 1951) is expressible
as

1 1-6B

i , 8
= Ry ®)

wheref = 1— Kgry/Km is the Biot-Willis parameter (Biot and Willis, 1957), aidis Skemp-
ton’s coefficient (Skempton, 1954)

6/Kary +¢(1/Ks —1/Kp)
Expanding (8) for smalp gives (7) to first order inp. Note however that Gassmann’s full

equation (8) has the further advantage that it is valid for all valud&:afright down to zero),
not just for values in the liquid range.

(9)

Eqn. (7) is also the result of Mavko and Jizba (1991) for a granite-like material under
high confining pressure so that the crack-like pores are closed. Their result is stated for a
sandstone-like material including both crack-like pores and other pores. But since we have
not considered the presence of any other pores except the crack-like pores in this argument,
the correct comparison material is just the mineral matrix.

Appendix A shows how to obtain the result of Mavko and Jizba (1991) from a modified
DEM scheme.

Gas inclusion: Ky << maym

For this limit, the stiffness form and the compliance form of the DEM equations are of equal
difficulty to integrate, but a complication arises due to the presence of shear modulus de-
pendence in the termy, in P. We are going to make an approximation (only for analytical
calculations) thay* ~ K*[3(1— 2vm)/4(1—v2)], so the effect of variations in Poisson’s ratio
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away fromvy, for the matrix material is assumeubt to affect the results significantly.€.,

to first order) over the range of integration. Without this assumption, the DEM equations for
bulk and shear are coupled and must be solved simultaneously (and therefore numerically in
most cases).

With this approximation, the equation to be integrated then becomes

dK*(y) 1
1- = —|K¢ —K* 1
A-y=—g, =5k -k, (10)
where
3ra(l—2vm)
_ 4 11
b 4(1—v3) (11)
The result of the integration is
K* =Kt = (Km— Kp)(1—)E. (12)

This result seems to show a very strong dependené&€“ain the aspect ratio and Poisson’s
ratio through the produet(1— 2v). But, we show in Appendix B that — vc >~ 7«/18, so
only the dependence enis significant.

It seems that this decoupling approximation might have a large effect for a dry system, but
an exact decoupling can be achieved in this case (see Appendix B). The result shows that the
only significant approximation we have made in (11) is one of ordey-2¢) and this term
is of the order of 20% ob, and usually much less, for all the cases considered here.

General inclusion: K¢ and waym arbitrary

Making the same approximations as in the previous casgyfpbut making no assumption
about the relative size d€; and the aspect ratio, we find that DEM gives

K*—Kp\ (K50 B
(i) (2) =m0 49

which can be rewritten in the form

b
1 1 K*\ b 1 1 1
——— =———)(Q—¢)55. 14
() () = (k=) e as
It is now easy to check that (14) reduces to (6) whes 0 and that (14) reduces to (12) when
Kf — 0.

Analytical results for G*

We now consider the same three cases for application of DEM to estimating the shear modulus
G*.
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Liquid inclusion: K; >> maym

In this limit, the polarization factor for shear is given by

1 4G*
*f
~ — , 15
Q C+15Kf (15)
where

1 1 8(1—vm)
-—=—|34+ ———. 16
c 5[ +na(2—vm):| (16)

In this case, we have approximatet ~ G*/2(1— vy) in order to decouple th&* equation
from the one for bulk modulu&*. Note that asy — 1, we anticipater* — 0.5, so forv*

in the usual range from O to 0.5 the factor<1) varies at most by a factor of 2. Therefore,
the condition onKs is not affected. The parameterdepends on a factor @ v)/(2—v)
which changes at most by a factor gf23 Thus, we expect some small deviations between the
analytical formula and the full DEM fo&* in the liquid saturated case.

Also note that we could argue, in this limit, that the first term on the right hand side of
(15) is dominant and therefore the second term should be neglected. However, for purposes of
comparison with Mavko and Jizba (1991), it will prove helpful to retain the second term.

Integrating the DEM equation, we have

1 4c (1

4c 1
§+15Kf = +—) 1—¢) c. a7

Gm | 15K;

In the limit of smallc (i.e., smalla) and¢ — 0, we have

1 1 4 1
————= — ey 18

which should be contrasted with the result of Mavko and Jizba [1991] for the same problem

1 1 4 (1 1
Lot _Al1l _ (19)

Because we need some other results to permit the analysis to proceed, a thorough comparison
of the present results with the Mavko and Jizba formula will be postponed to the section on
the ratio of compliance differences.

Gas inclusion: Ky << maym

In this second limit, the equation f&@* is especially simple, since

1 |: 4 8(1— vm)(5—vm)] _1

*f:_ 1 ==
Q 5 ra(2—vm) d

(20)
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is a constant under our constant Poisson’s ratio approximation. The DEM equation is then
integrated to obtain

G* = Gp(1—¢)d (21)

which should be compared to (12). Within the analytical approximation, we will use (21) as
our defining equation foGqry, and note that we can then replace the volume fraction factor

1-¢ by

Gdry d
1-¢)=| —= 22
(1) (Gm) (22)
whenever it is convenient to do so.

Our decoupling approximation for shear modulus in this case turns out to be somewhat
better than the corresponding one for the bulk modulus. The result in Appendix B shows that
the only significant approximation we have made in (20) is one of order3-7{y) and this
term is of the order of 7% af or less for all the cases considered here. The relative error is
therefore about one third of that made in the case of the bulk modulus.

General inclusion: K¢ and waym arbitrary

In this more general case, we have

1 2G*(2—3g)

x f
Ty = =9 23
Q c 15K +9G*) (23)
where
To
= 24
9= 20" (24)
Again, the DEM equations can be easily integrated and yield
1, cg\ 14
G*\ (& takr 1
(G—) <1—cgf) =(1-¢)d. (25)
m/ \ Gy T aky

Then, it is easy to check that the two previous cases are obtainedawvhef andK; — 0,
respectively.

EXAMPLES

We now consider some applications of these formulas. We take quartz as the host medium,
havingK,, = 37.0 GPa an&5, = 44.0 GPa. Poisson’s ratio is then found tovge= 0.074.
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For liquid saturation, the shear modulus goes to zero as the crack volume fraction in-
creases, while the bulk modulus approaches the bulk modulus of the saturating liquid, which
we take as water her&¢ = 2.2 GPa). This means that the effective value of Poisson’s ratio
increases towards’ = 0.5 as the crack volume fraction increases, and thus the approximation
thatv* is constant clearly does not hold for this case. We therefore expect that the greatest
deviations of the analytical approximation should occur for the case of liquid saturation.

In contrast, for the dry case, both shear modulus and bulk modulus tend towards zero as
the crack volume fraction increases. Thus, since the trends for both moduli are similar, the
approximation of constant Poisson ratio might hold in some cases, depending whether bulk
and shear moduli go to zero at similar or very different rates with increasing crack volume
fraction.

We consider three cases in Figures 1-6:o(35 0.1 for Figures 1 and 2. (2) = 0.01 for
Figures 3 and 4. (3 = 0.001 for Figures 5 and 6. The first two cases are easily integrated
for DEM. We use two Runge-Kutta schemes from Hildebrand (1956): equations (6.13.15)
and (6.14.5). When these two schemes give similar results to graphical accuracy, we can be
confident that the step size used is small enough. If they differ or if either of them does not
converge over the range of crack volume fractions of interest, then it is necessary to choose a
smaller step size for integration steps. We found that a step sixg ef 0.01 was sufficiently
small for botha = 0.1 anda = 0.01, while it was necessary to decrease this step size to
Ay = 0.001 for the third casey = 0.001. (Still smaller steps were used in some of the
calculations to be described later.)

The results show that our expectations for the agreement between the analytical and nu-
merical results are in concert with the results actually obtained in all cases. The analytical ap-
proximation gives a remarkably good estimate of the numerical results in nearly all cases, with
the largest deviations occurring — as anticipated — for the intermediate values of crack vol-
ume fraction in the cases of liquid saturation for the bulk modulus estimates. We consider that
the results of Figures 1-6 are in sufficiently good agreement that they provide cross-validation
of both the numerical and the analytical methods.

For the saturated case, we anticipated little if any deviation for the bulk modulus between
the analytical results and the full DEM as is observeddos 0.1 ande = 0.01. Larger
deviations are found fax = 0.001. We also observed the anticipated small deviations for the
shear modulus between the analytical formula and the full DEM.

Note that Gassmann’s predictions for bulk modulus are in very good agreement with the
numerical DEM results for saturated cracks ang 0.001.

For the dry case, we anticipated that the analytical shear modulus formula would be a
somewhat better approximation of the full DEM, than that for the bulk modulus. Both approx-
imations were expected to be quite good. These results are also observed in the Figures.
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On improvements

The analytical results obtained here for the dry case could be improved somewhat several
different ways. Instead of replacing by v, we could have replaced it by the fixed point
value v, obtained in Appendix B. Since the fixed point is an attractor and the values rapidly
approachy for small but finite volume fractions, this approximation would guarantee an im-
proved approximation over most of the range of crack volume fraction. However, it will make
the approximation a little worse in the very small volume fraction region. It has been and will
continue to be a significant advantage for our analysis to have formulas valid in thegsmall
limit, so we have chosen not to do this here. Alternatively, instead of choosing either of the
extreme values of*, we could use their mean, their harmonic mean, or their geometric mean,
etc., with similar benefits and drawbacks. Or, we could make direct use of the results from
Appendix B for the decoupled equation for Poisson’s ratio. This approach will improve the re-
sults over the whole range of volume fractions, but will complicate the formulas considerably.
We want to emphasize, however, that our goal here has not been to achieve high accuracy in
the analytical approximation, but rather to gain insight into what the equations were comput-
ing and why. Having accomplished this even with the simplest approximationvy,, we do

not think it fruitful to dwell on this issue and we will therefore leave this part of the subject
for now. For the interested reader, some additional technical justifications of the analytical
approximation are provided in Appendix C.

Next we want to do more detailed comparisons between these results and those of Gassmann
(1951) and of Mavko and Jizba (1991) in the remainder of the paper.

RATIO OF COMPLIANCE DIFFERENCES

We have already seen that there are several advantages of the differential scheme presented
here for purposes of analysis. Another advantage will soon become apparent when we analyze
the ratio of the compliance differences

(26)

This ratio is of both theoretical and practical interest. It is of practical interest because it is
often easier to measure bulk moduli, and it would therefore be possible to estimate the shear
behavior from the bulk behavior if the rati® were known to be either a universal constant,

or a predictable parameter. Mavko and Jizba (1991) show that this ratio is givent/15

when the differences between the dry and the starred quantities are due to a small amount of
soft (crack-like) porosity that is liquid filled for the starred moduli. The derivation of this ratio
makes it clear that the value = 4/15 is actually an upper bounde., a value that cannot

be exceeded for such systems, but also a value that clearly is not achieved for many systems
lacking such soft porosity. In particular, it was already known by Mavko and Jizba (1991)
that R ~ 0 when the microgeometry of all the porosity is spherical. The crack-like porosity in
Mavko and Jizba’s model has finite compressiblity normal to its plane and is incompressible
in the plane of the crack. Thus, their soft porosity can be thought of as cracks whose aspect
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Dry and Saturated Cracks fora = 0.1
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Figure 1: Bulk modulus for dry and liquid saturated cracked porous mediamwiit®.1. Full

DEM calculation is shown as a solid line for the saturated case and as a dot-dash line for the
dry case. The analytical approximations in the text are displayed as a dashed line for both dry
and saturated cases. Agreement between full DEM and analytical approximation is excellent

in both cases. Gassmann'’s prediction is shown by the dottedjiméd-allk1pg| [NR]

ratios approach zero. Goertz and Knight (1998) have also done a parameter study showing
that a related ratioRGn,/Km) is generally less than/45 for oblate spheroids and it tends

to zero as the oblate spheroids’ aspect ratios approach unity. It would be helpful to see this
behavior directly in the equations, and it is the purpose of this section to show this behavior

analytically.

Each of the four material constants appearing in (26) can be computed/estimated using
the DEM. But, R is normally defined only in the limit of very small values of soft porosity,
in which case both the numerator and the denominator tend to zero. This type of limit is
well-known in elementary calculus, and the result is given by L'Hépital’s rule:

_ d(1/G" ~ 1/Gury)/dy
d(l/K*—-1/ Kdry)/dy.

From this form ofR, it is now quite easy to relate the ratio to th& andQ’s discussed earlier.
In particular, we find that

R

(27)

2Ks mwaym—2Gm/3
SGm maym(Ks +maym)

d
(1- y)a/(l/G* —1/Gqry) = (28)

and
Kt

2
(K T ey (L 3red=2m)/41—vy), (29)

d
(- y)a,(l/K* —1/Kary) = —
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Dry and Liquid Saturated Cracks fora = 0.1
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Figure 2: Shear modulus for dry and liquid saturated cracked porous mediar with.1.

Full DEM calculation is shown as a solid line for the saturated case and as a dot-dash line
for the dry case. The analytical approximations in the text are displayed as a dashed line for
both dry and saturated cases. Agreement between full DEM and analytical approximation is
again excellent in both cases. The Mavko-Jizba (1991) prediction is shown by the dotted line.
jim1-allmulpmj [NR]

Dry and Liquid Saturated Cracks for a = 0.01
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Figure 3: Same as Figure 1 for= 0.01.|jim1-allkO1pg| [NR]
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Dry and Liquid Saturated Cracks for a = 0.01
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Figure 4. Same as Figure 2 for=0.01. Note that the Mavko-Jizba agreement is poor except
at low porosities £~ 2%). jim1-allmu01pmj_25[NR]

Dry and Liquid Saturated Cracks for a = 0.001
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Figure 5: Same as Figure 1 far= 0.001. Gassmann (1951) is in very good agreement with
DEM for this case}jim1-allk001pg_0.1[NR]
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Dry and Liquid Saturated Cracks for a = 0.001
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Figure 6: Same as Figure 2 far= 0.001. Again, note that the Mavko-Jizba prediction is in
poor agreement except at very low porositieS\(O.Z%).]jiml-allmuOOlpmj [NR]

and therefore that

R= 1i5 (1— %) (l+ 3ra(l—2vm)/4(1— v%)) 1. (30)
[For sandstones, we could instead evaluate (3§)-atpg andv(¢g) = vs. It is only the soft,
crack-like porosity that needs to be very small for (30) to be applicable.] Equation (30) is an
exact expression for the ratios of these two slopes when the calculation stgrts Giand

v(0) = vm. It depends only on the aspect ratioand Poisson’s ratio, of the mineral. It

shows a sublinear decrease Rfwith increasinge, and the value oR reaches zero when

ac = 4(1—vy) /3. Because the formulas used for the penny-shaped crack model are valid
only for very low aspect ratios, this latter behavior should not be taken literally. We do expect

R to decrease as the aspect ratio increases, and the trend should be to zero, but this zero value
should only be achieved at= 1. This is the type of behavior observed, for example, by
Goertz and Knight (1998). We will check the quantitative predictions by doing a numerical
study here for oblate spheroids as a function of aspect ratio. The results will be similar to
those obtained by Goertz and Knight (1998), but not identical for several reasons: (1) Goertz
and Knight plotR G,/ K, (instead ofR) for the Mori-Tanaka method (Benveniste, 1987), (2)

the R values presented here are for an infinitesimal change in soft porosity, and (3) the present
calculation is (therefore) actually not dependent on the type of effecive medium approximation
used, only on the Eshelby (1957) and Wu (1966) fack®end Q.

The appropriate expressions fBrand Q for oblate spheroids can be found in Berryman
(1980b). We repeat the analysis given above in (27)—(29) step by step for oblate spheroids.
The results are shown in Figure 7, together with the results obtained using the penny-shaped
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Ratio of Compliance Differences
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Figure 7: Ratio of compliance differenc&sas a function of aspect ratio for oblate spheroids
and for the penny-shaped crack approximation to oblate spheroids. Note that the asymptotic
value for smalle is R = 4/15 in both cases, in agreeement with Mavko and Jizba (1991).
jim1-Rratio_log [NR]

cracks as presented already in Equation (30). We see that the results agree completely for
a’s smaller than about 0.001, and are in qualitative agreement over most of the rest of the
range. As already discussed, the penny-shaped crack model is a limiting approximation for
the oblate spheroids, and deviations from the curve for oblate spheroids do not have physical
significance; they merely indicate the degree of error inherent in this choice of approximation
scheme. The results for oblate spheroids should be considered rigorous.

DISCUSSION AND CONCLUSIONS

Discussion

We began the paper by pursuing the differential effective medium predictions for the bulk
and shear moduli in a cracked material in which the cracks can be either gas-saturated (dry)
or liquid-saturated. The DEM equations can be integrated numerically without serious diffi-
culty for the exact model of oblate spheroids of arbitrary aspect ratio, but the full formulas for
oblate spheroids are rather involved. In order to make progress on analytical expressions, part
of the effort was directed towards study of the penny-shaped crack model of Walsh (1969).
This model is not too difficult to analyze if an additional approximation is entertained. The
problem for analysis is that the ordinary differential equations for bulk and shear moduli are
coupled. If they can be decoupled either rigorously or approximately, then they can be inte-
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grated analytically. We accomplished the decoupling for the penny crack model by assuming
that changes in Poisson’s ratio occurring in those terms proportional to the aspect ratio are
negligible to first order. This permits the decoupling to occur and the integration to proceed.
We could subsequently check the analytical results against the full DEM integration for penny-
shaped cracks, which showed that the analytical results were in quite good agreement with the
numerical results.

To attempt to understand why the analytical results worked so well, we studied the behav-
ior of Poisson’s ratio for the same system, and found that, as the porosity increases, for the dry
systems Poisson'’s ratio tends to a small positive value on the order /Af8, wherex is the
aspect ratio, and for liquid saturated systems it tends towat2lsnlall cases. These results
permit error estimates for the analytical formulas showing that errors will always be less than
about 5%—-20%, depending on the aspect ratio and the porosity value.

We have also shown that the Mavko and Jizba (1991) proportionality factorl&félat-
ing the differences in shear compliances to the differences in bulk compliances for cracked
systems is an upper bound and that this upper bound is approximately achiewed<for
0.001. The proportionality factor decreases monotonically with increasing aspect ratio of
oblate spheroids, and vanishes identically for spheres=ail.

Conclusions

The analytical approximation made in this paper seems to be very effective at capturing the
first order behavior of the bulk and shear moduli for cracked porous media in both the dry
and saturated cases. The resulting formulas are not rigorous, unlike Gassmann’s formulas
for low frequency behavior, but these approximate formulas nevertheless have a wider range
of validity (considering both porosity and frequency ranges) than either Gassmann (1951) or
Mavko and Jizba’s (1991) results.

We believe these results will, at the very least, provide a helpful way of understanding
the behavior of these complex systems, and may also provide a stepping stone towards more
general formulas in the future.

APPENDIX A — SANDSTONE-LIKE SAMPLE CALCULATIONS

The main focus of the paper is on the effects of addition of cracks to pre-existing materials.
When cracks are added to homogeneous background, we think of this as being a granite-like
material. This case has been treated in the main text. To show the generality of the method,
we want to give a brief treatment of the sandstone-like situation of a material having a pre-
exisiting porositygg in this appendix. This porosity may itself be either liquid saturated or
gas saturated (dry). For simplicity, we will assume here ¢igas liquid saturated when liquid
saturated cracks are to be added, dry when dry cracks are to be added.

There are two further alternatives to be considered. First, cracks may be added randomly
to the pre-existing material. Second, cracks may be added preferentially to the porosity-free
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host material. We discuss these two cases in turn.

Random addition of cracks

Random addition of inclusions is the case considered in the main text, so the DEM equations
themselves do not change. We use (1) and (2) as before, but the range of integration changes to
the interval starting af = ¢o Up toy = ¢ = ¢o+ Pcrack- The only differences in the resulting
formulas are that (a) everywhere the factor(®) appeared before it is now replaced by the

ratio (1— ¢)/(1— ¢o), and (b) everywher&, andG, appeared these material constants are
replaced byK (¢p) andG(¢p). So, for example, equation (6) becomes

1 1 1 1 1-¢ )
Ry 31
Ki K (Kf K(¢o)) (1—¢o 1)
Whengerack << (1— ¢o), we can rewrite this expression as
1 1 1 1 @crack
— _ == — 32
g = (& =) (15 (32)

This formula still differs from the Mavko and Jizba (1991) result, but the difference is never-
theless expected because their derivation does not assume random placement of cracks. We
can resolve this discrepancy when we make use of an assumption of preferential addition of
cracks in the next subsection.

Preferential addition of cracks

The factor (1- y) on the left hand sides of both (1) and (2) arises from the need to account for
the fact that, when an inclusion is placed in a composite, the volume of the inclusion replaces
not only host material, but also some of the other inclusion material previously placed in the
composite. Whery is the inclusion volume fraction, the remaining host volume fraction is
(1—y). So random replacement dfy of the composite medium only replaces<{l)dy

of the host material. Replacing instedg/(1 — y) of the composite then gives the correct
factor ofdy host replacement; thus, the factor oY) is required in (1) and (2) for random
inclusion placement at finite values pf

If we now assume instead that the inclusions are place preferentially in pure host material
(and this gets progressively harder to do in practice for larger integrated overall inclusions
fractionsy), then the DEM equations must be modified to account for this situation.

For example, with preferential addition of inclusions, it is clear from the preceding con-
siderations that DEM equation (5) is replaced by

d 1 1 1
7)o ¢

1 1 1 1
W =\ — v crack- 34
K™ K(¢o) (Kf Km>¢ “ 59

Integrating (33) gives
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The validity of this result clearly depends @p being sufficiently small so that it is possible

to find enough pure host material to which cracks can be added “randomly.” TakirgO
guarantees satisfaction of the requirement, but the approximation must eventually break down
as¢g — 1.

Eqgn. (34) is almost the corresponding result of Mavko and Jizba (1991). Mavko and Jizba
use as their comparison state the dry porous material, assuming that no cracks are present or
that, when present, they are closed due to applied external pressure. We can also obtain the
same result using (33), but nd&*(¢o) = Kary(¢o), SO the integration has a different starting
value than in the previous paragraph. Then, we find

1 1 1 1
_ S . 35
K&, Kary(eo) (Kf Km>¢”“k (39)

Eqn. (35) is exactly the corresponding result of Mavko and Jizba (1991). Although the right
hand sides of (34) and (35) are identical, the results differ,K* # Ky, 5, since the assumed
host material is fluid saturated in the first case and dry in the second case.

APPENDIX B — POISSON'’S RATIO FOR DRY CRACKS

When the cracks are taken to be dry, so tkat= G; = 0 in (1) and (2), it turns out that an
elegant decoupling of the DEM equations is possible [also see Zimmerman (1985) and Hashin
(1988)]. If we consider the parameter ra®y/K* = 3(1— 2v*)/2(1+ v*), we find that it
satisfies the equation

din(G*/K*) B 3(1-vy) dv*

dy  (A4+vH(A—-2v%) dy
Furthermore, it is generally true for dry inclusions (not just for penny-shaped cracks) that both
P* and Q* are functions only of the same rat®*/K*, or equivalently of Poisson’s ratio

v*. Thus, we can solve (36) for eithet or the ratio of moduli, without considering any other
equation.

1-vy) P — Q. (36)

It is also important to notice that the dimensionless polarization fa&t@asd Q are both
often close to unity, and furthermore that it is possible that, for special values of Poisson’s ratio,
we might findP* = Q*'. If this happens for some critical valué = v¢, then the equation (36)
guarantees that this value of Poisson’s ratio will be preserved for all values of porosity, since
the right hand side vanishes initially, and therefore always. Such a critical value is usually
called afixed pointof the equations, and such fixed points can be eistedbleor unstable
If they are unstable, then a small deviation from the critical point causes a rapid divergence
of Poisson’s ratio from the fixed point. If they are stable, then a small deviation produces
a situation in which the value of Poisson’s ratio gradually (asymptotically) approaches the
critical value. When this happens, we say the fixed point staactor. For the DEM equation
(36), a fixed point that is an attractor will only be reached in the linit- 1, but the value
of Poisson’s ratio will change fairly rapidly in the direction of the attractor when the first
cracks are added to the system. Such behavior of Poisson’s ratio has been noted before by
Zimmerman (1994) and by Dunn and Ledbetter (1995), among others.
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For penny-shaped cracks, we have

i b 41— 1 8(1—v*)(5—v*)
PT=Q _37roc(1—2v*)_§|:1+ 3ra2—v7) ]

(37)

which has a fixed point approximately (using one step of a Newton-Raphson iteration scheme)
at

2o

~ 36+ 57a

This shows that, wher is very small, Poisson’s ratio for the dry cracked material tends
toward small positive values. For somewhat larger valuas, &foisson’s ratio approaches a
value proportional tec and on the order ot «/18.

(38)

Ve

For comparison, consider spherical void inclusions [see Berryman (1980) for the general
expressions foP andQ]. Then, we have

1+v* 2(4—5v%)

P*i et — _ ’ 39
Q 2(1—2v%) 7—5v* (39)
which has a fixed point at
1
Ve = g (40)

This result has been remarked upon previously by Zimmerman (1994). Similarly considering
needle-shaped void inclusions, we have

240 17
P* _ 0% — 2| Z42B=HY) ], 41
=32 5[3+ ( ”)] (41)
which has a fixed point at
1
Vo= [7— ng] ~0.20185. (42)

Dunn and Ledbetter (1995) have shown that all the prolate spheroids have critical Poisson’s ra-
tios close to that for spheres. We see that needles, being the extreme case of prolate spheroids,
is in agreement with this result.

Dunn and Ledbetter (1995) have shown that disk-shaped inclusions (which are achieved
by taking oblate spheroids to tlhe= 0 limit) have a critical Poisson’s ratio af = 0. This
result and the others obtained above are collected for comparisaBirETL.

TABLE 1. Fixed points of equation (36) for commonly considered inclusion shapes.

Shape Ve
Needle, ~0.202
Sphere %
Penny | ~ g515 5050
Disk 0
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TABLE 2. Typical values of Poisson’s ratio for various solid materials contained in rocks. See
for example Mavkeet al. (1998).

Mineral VYm
Quartz | 0.06 -0.08
Corundum 0.24
Dolomite | 0.20-0.30
Calcite | 0.29-0.32
Feldspar | 0.32-0.35

To clarify the behavior of the solution of (36), we will do an approximate analysis by
expanding the right hand side arouné= 0 and also note that for small G*/K* ~ 3(1—
3v*)/2. Then, (36) becomes

dv* 1 6v*
1-— ~— — , 43
(=) dy 15 b5ra (43)
which can easily be integrated to yield
T T 1
— V) > (—— 1—¢)h 44
(g — V") = (75 —vm(d—9) (44)
wherevy, is the starting, or in our case the mineral, value of Poisson’s ratio, and
h=5mra/6. (45)

A more precise, and therefore more tedious, analysis of the right hand side of (37) gives the
improved approximation (38) for the asymptotic valuegf

In Figure 8, we show the actual results for Poisson’s ratio from the full DEM in the same
three examples shown in Figures 1-6. The starting value of Poisson’s rato=9.0742.
For comparison, ABLE 2 contains a listing of various Poisson'’s ratios for minerals that could
be important in rocks in order to show the range of behavior observed in nature. Except for
different starting locations, we expect the qualitative behavior of the curves for Poisson’s ratio
to closely follow that of Figure 8 and (44) in all cases.

[Technical note concerning the dry case: ko 0.1, the Runge-Kutta scheme used to
solve the coupled DEM equations f&* and G* was sufficiently accurate that could be
computed from these values. However, éo= 0.01 and 0.001, the accuracy obtained was
not sufficient, so we instead used the same Runge-Kutta scheme but applied it directly to (36).
This approach gave very stable results.]

Figure 9 compares the results for oblate spheroids to those of penny-shaped cracks; both
curves are obtained by finding the zerodof Q numerically. To provide additional insight,
the curvev = %é’.’% [which was obtained by using the functional form of (38) and fitting
the coefficient in the denominator @t= 1] is also shown. We see that the results for penny-
shaped cracks deviate substantially from those of oblate spheroids-ag, but they are in
agreement at lower values @f< 0.001. The deviations from the results for oblate spheroids,
again, are not physical and should simply be viewed as artifacts introduced by the very low
aspect ratio limiting procedure used to obtain the approximate formulas for penny-shaped
cracks.
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Asymptotic Behavior of Poisson's Ratio

1 O r T T T T

Poisson‘s Ratio v

— Sat:a=0.1
‘ T ---Satta=001 [———-—--—-
10 - - Sat:a =0.001 1
b — Dry:a=0.1
[ ---Dry:a=0.01
P - - Dry:a=0.001}______
-4

10 L L L
0 0.2 0.4 0.6 0.8 1

Crack Volume Fraction

Figure 8: Asymptotic behavior of Poisson’s ratio as a function of crack volume fraction for
three values of: 0.1, 0.01, 0.001. The asymptotic value for saturated samples is always
ve = 1/2. For dry samples, the asymptotic value depends on the geometry of the inclusion,
and therefore on for cracks. The limiting value; >~ w«/18 is a stable attractor of the DEM

equations, as is observed in this fig [NR]

APPENDIX C — TECHNICAL JUSTIFICATION OF THE APPROXIMATION FOR  y

It is inherent in the mathematical form of all DEM schemes that they always give correct
values and slopes of the curves for small values of the inclusion volume fraction, and that they
always give the right values (but not necessarily correct slopes) at high volume fractions. We
see that these expectations are fulfilled in all the examples shown here.

The approximations made in the text to arrive at analytical results were chosen as a conve-
nient means to decouple the equations for bulk and shear moduli, which are normally coupled
in the DEM scheme. For thiegquid saturatedcase, the approximations for bulk modulus are
very good for all values of aspect ratio, but for shear modulus the exponent determined by
(16) can deviate as much as a factor p82The value chosen is the maximum value possible,
guaranteeing that the analytical approximation will always be a lower bound for this case.

In contrast, for the case afry cracks, the approximations for the shear modulus are ex-
pected to be somewhat better than those for the bulk modulus. The analytical approximation
is again expected to be a lower bound for the full DEM result for the shear modulus. Analysis
for the bulk modulus is more difficult in this limit as it requires checking that the @tioK *
remains finite as the porosiy — 1, and this would be difficult to establish if Poisson’s ratio
were going tov = 1/2, as it does for the liquid saturated case. But, Appendix B shows that
Poisson’s ratio actually tends to a value of abqut- 7« /18, so there is no singularity in the



22 Berryman et al. SEP-108

Poisson‘s Ratio Fixed Points
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Figure 9: Poisson’s ratio fixed point as a function ofe found numerically for oblate
spheroids and penny-shaped cracks, and also for penny-shaped cracks using the analytical
expression. = 27« /(36.0+ 2.245r«). The two curves for penny-shaped cracks are nearly
indistinguishable on the scale of this plot. The correct fixed point for spheres ) is

vc = 1/5, and this value is attained in the— 1 limit by the curve for oblate spheroids.
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K* behavior for this case. This feature is also confirmed by the numerical results.
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