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A least-squares approach for estimating integrated velocity
models from multiple data types

Morgan Brown and Robert G. Clapp

ABSTRACT

Many exploration and drilling applications would benefit from a robust method of inte-
grating vertical seismic profile (VSP) and seismic data to estimate interval velocity. In
practice, both VSP and seismic data contain random and correlated errors, and integration
methods which fail to account for both types of error encounter problems. We present a
nonlinear, tomography-like least-squares algorithm for simultaneously estimating an in-
terval velocity from VSP and seismic data. On each nonlinear iteration of our method, we
estimate the optimal shift between the VSP and seismic data and subtract the shift from
the seismic data. In tests, our algorithm is able to resolve an additive seismic depth|error,
caused by a positive velocity perturbation, even when random errors are added to both
seismic and VSP data.

INTRODUCTION

Although the interval velocities obtained from surface seismic data normally contain errors
(caused by poor processing, anisotropy, and finite aperture effects, among other factors),
prospects are often drilled using only depth-converted seismic data. Unsurprisingly, depth
converted seismic data often poorly predicts the true depth of important horizons. This “mis-
tie” is more than a mere inconvenience; inadvertently drilling into salt (Payne, 1994) or into an
overpressured layer (Kulkarni et al., 1999) can result in expensive work interruptions or dan-
gerous drilling conditions. For depth conversion, vertical seismic profile (VSP) data generally
produces better estimates of interval velocity than does surface seismic data. For this reason,
VSP data has been used to “calibrate” seismic velocities to improve depth conversion, before,
during, and after drilling.

Methods to independently estimate interval velocity from VSP and surface seismic data
exist and are more or less mature. Surprisingly, there exists no robust, “industry-standard”
method for jointly integrating these two data types to estimate a common velocity model. The
main challenge in developing such a method lies in measuring and accounting for the errors
between each data type. Data errors may be either random or correlated, or most commonly,
both. A viable integration scheme must account for both types of error.

Some calibration algorithms (Ensign et al., 2000) directly compute the depth misfit be-
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tween depth-converted seismic and VSP data (or sonic log picks) and use it to compute a
correction velocity. The reliability of such algorithms is hampered by the assumption that the
VSP data is error-free, when in fact, these data have random (hopefully) first-break-picking
errors and also possibly exhibit correlated errors resulting from correction of deviated well
VSP data to vertical (Noponen, 1995).

Various authors have employed least-squares optimization algorithms to solve a related
problem: the estimation of an optimal time shift to tie crossing 2-D seismic lines at the inter-
sections (Bishop and Nunns, 1994; Harper, 1991). While these algorithms correctly assume
that all data has errors, they assume that these errors are uncorrelated, or in other words, that
the data are realizations of the same random variable. We expect seismic time/depth pairs to
differ from VSP time/depth pairs by a low frequency shift, and that both data have random
errors. Figure 1 illustrates this relationship as shifted probability distribution functions. A
common view in practice, and one espoused by geostatistics, is that the inherent inaccuracy,
or “softness” of seismic data causes the observed misfit between seismic and wellbore data
(Mao, 1999). No attempt is made to estimate the joint data correlation, and the net effect is a
faulty assumption that the seismic data is less accurate than it really is.

In this paper, we present a nonlinear least-squares algorithm using VSP and surface seismic
data for the simultaneous estimation of interval velocity and an additive seimic correction
velocity. We test the algorithm on a real VSP dataset. To simulate seismic data, we perturb
the VSP data with depth errors derived from a positive velocity anomaly. The tests show that
our algorithm correctly handles the errors in VSP data and leads to an unbiased residual. We
also add random errors to both the VSP and seismic data and show that by assuming that the
data are correlated, we can improve the final result.
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LEAST SQUARES FORMULATION

The fundamental data unit of this paper is the “time/depth pair”, which is quite simply the
traveltime of seismic waves to a specified depth, along an assumed vertical raypath. We denote
time depth pairs by, ¢p), indexed byp, the “pair” index. The output velocity function is

linear within layers. We denote layer boundaries, which are independent of the time/depth
pairs, byt), indexed by, the “layer” index. We begin by deriving the 1-D data residual — the
depth error between the depth component of a time/depth ggia(d its time component

(zp) after vertical stretch with the (unknown) interval velocity:

ep=;p—/0 " o(t)dt. (1)

For implementation purposes, we break the integral into the sum of integrals between neigh-
boring time/depth pairg & [1p, Tp+1]):

P
engp—Zf v(t)dt. 2)
g=1""a-1
We assume that the interval velocity in layes linear,

v(t) =vo) +kit;  {t=[t,t44]}, 3

so the integral in equation (2) has a closed form. To obtain a correspondence between time/depth
pairs and layer boundaries, note that, given a time/depth pair, we can always determine in
which layer it resides. In other words, we can unambiguously Wiatea function ofp, I[ p].

Now we can evaluate the integrals of equation (2):

p

ki
€ ={p— Z voJ[a) (Tq+1 — Tq) + %(f§+l —13). 4)
a=1

Equation (4) defines the misfit for a single time/depth pair, as a function of the model param-
eterg. Now pack the individual misfits from equation (4) into a residual vectgr,

rd=;—A[Vk°]%o (5)

The elements of vectar are the time/depth pair depth valuésjs the summation operator
suggested by equation (4). ang [k]" is the unknown vector of intercept and slope parame-
ters. The primary goal of least squares optimization is to minimize the mean squared error of
the data residual, hence the familiar fitting goa) fiotation.

2Equation (4) implictly assumes that layer boundaries do not occur between time/depth pairs. The code
does not make this assumptions: layer boundaries can occur anywhere in time, and are completely indepen-
dent of the time/depth pairs. When a layer boundary lies between time/deptlpaidsp + 1, the integral
has two parts: depth contribution from above and below the layer boundary.
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1-D Model Regularization: Discontinuity Penalty

In many applications, the interval velocity must be smooth across layer boundaries. To ac-
complish this, we incorporate a penalty on the change in velocity across the layer boundary,
and effectively exchange quality in data fit for a continuous result. However, as mentioned
by Lizarralde and Swift (1999), an accumulation of large residual errors would result if we
forced continuity in the velocity function across layer boundaries with large velocity contrast.
Therefore we “turn off” the discontinuity penalty at certain layers via a user-defined “hard
rock” weight.

Let us write the weighted discontinuity penalty at the boundary between laged + 1:

wi' [voy +kiti — (voj+1+kisati)] (6)

wlh is the hard rock weight. We suggest that ﬂfﬁebe treated as a binary quantity: either 1 for
soft rock boundaries or O for hard rock boundaries. As before, we write the misfits of equation
(6) in fitting goal notation and combine with equation (5):

A Vo ~ C
e ][% =16 L
C is simply the linear operator suggested by equation (6): a matrix with coefficiertd of
and=t;, with rows weighted by tha)lh. Application ofC is tantamount to applying a scaled,
discrete first derivative operator to the model parameters in time. The gcatantrols the

trade off between model continuity and data fitting. Lizarralde and Swift (1999) give a detailed
strategy for choosing.

Estimating and Handling Random Data Errors

In this paper, we assume zero-offset VSP (ZVSP) data. We derive a simple measure of ZVSP
data uncertainty below. The uncertainty in surface seismic data depends on velocity and ray-
path effects in a more complex manner, although Clapp (2001) has made encouraging progress
in bounding the uncertainty. Somewhat counter to intuition, we adopt the convention that trav-
eltime is the independent variable in a time/depth pair,Z2.e,f (t). Bad first break picks and

ray bending introduce errors into the traveltimes of ZVSP data, but depth in the borehole to the
receiver is well known. To obtain an equivalent depth error, we need only scale the traveltime
error in ZVSP data by the average overburden velocity. By definition, the travelt{aleng

a straight ray) is related to depthn the following way:

Z= t Uavg f (8)

whereva,,g is the average overburden velocity. If the traveltime is perturbed with extar
follows that the corresponding depth erraz is simply the traveltime error scaled by, g:

AZ = At Uavg. (9)
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If the data errors are independent and follow a Gaussian distribution, least squares theory pre-
scribes (Strang, 1986) that the data residual of equation (5) be weighted by the inverse variance
of the data. Assuming that we have translated a priori data uncertainty into an estimate of data
variance, we can define a diagonal maWikwhere the diagonal elemenisg; = oi_l: the

inverse of the variance of th&" datum. This diagonal operator is applied to the data residual

of equation (7):
WA vo | | W¢
e e Y] @

Estimating and Handling Correlated Data Errors

We assume that the measured VSP defithg, consist of the “true” deptht, plus a random
error Vectorg,sp:

£ysp= € +€usp (11)

Furthermore, we assume that the measured seismic dépghsare the sum of the true depth,
a random error vectoesejs, and a smooth perturbationg:

$seis= Z‘ + €seist+ AL (12)

When the data residuals are correlated, the optimal choic&/far equation (10) becomes

the square root of the inverse data covariance matrix. Guitton (2000) noted that after applying
a hyperbolic Radon transform (HRT) to a CMP gather, coherent noise events, which are not
modeled by the HRT, appear in the data residual. He iteratively estimated a prediction error
filter from the data residual and used it as the (normalized) square root of the inverse data
covariance.

If we subtractA¢ from ¢ then the error is random, as desired. Unfortunataly,
is unknown. We iteratively estimat&¢, and the velocity pertubation which is assumed to
produceA¢, Av, using the following tomography-like iteration:

At =0
iterate {
Solve equation (10) fov = [vo K] T: [ WA }v ~ [ W(¢ +AQ) }
eC 0
Solve equation (10) foAv: [ WA }Av ~ [ W(AV —¢) }
eC 0
AL =AAvV
}

The first stage of the iteration solves equation (10) for an interval velocity function, using
the VSP data, and the corrected seismic data. In the second stage of the iteration, we estimate
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a correction velocity function from the residual, which is similar to Guitton’s approach. By
forcing the correction velocity to obey equation (10), we force it to be “reasonable”, and hence,
we ensure that the estimated correction depth results from this reasonable velocity. One future
feature that we envision is the ability to force the correction velocity to be zero in one or more
layers. For example, if we had strong evidence to believe that most of the seismic/VSP mistie
was caused by anisotropy in one prominent shale layer, we might only want nonzero correction
velocity in this layer.

By forcing the correction velocity to be reasonable (continuous, for example), our esti-
mateddepthcorrection may not fully decorrelate the residual in the first step of the iteration.
For this reason, we must do more than one iteration. We find that for this example, the cor-
rection velocity changes very little after 15 nonlinear iterations, and that 5 nonlinear iterations
gives a decent result.

We admit that our nonlinear iteration may be risky. We have solved a very simple ana-
log to the classic reflection tomography problem, where traveltimes depend both on reflector
position and on velocity. Our approach was to completely decouple optimization of velocity
from correction depth. Modern tomography approaches attempt to simultaneously optimize
reflector position and velocity, and we should attempt to improve our method similarly.

REAL DATA RESULTS

Figure 2 illustrates the experiment. A VSP, donated by Schlumberger, is overlain by first
break picks, obtained by picking from the first trace and crosscorrelating. Layer boundaries
are shown as horizontal lines. Most layers contain more than three time/depth pairs. In some
regions, the waveform is quite crisp, and the picks predictably appear accurate. In other re-
gions, notably after 1.8 seconds, the wavelet coherency and amplitude are degraded, and the
picks appear “jittery”. Nonetheless, we assume a variance of 0.006 seconds in the picked VSP
traveltimes, and compute the equivalent depth uncertainty from equation (9). The inverse of
the depth uncertainty is directly input as the residual weight to equation (10). Figures 3-6 il-
lustrate the scheme we proposed earlier for simultaneously inverting VSP and surface seismic
time/depth pairs for interval velocity.

Figure 3 is the “proof of concept”. We simply add a positive correlated depth error, corre-
sponding to “anisotropy” in layers 2-4, to the VSP time/depth pairs to simulate surface seismic
data. The topmost panel contains the known (solid line) and the estimated (+) velocity per-
turbations. Our algorithm has reconstructed the known velocity perturbation quite well. The
second panel from top shows the depth error produced by backprojecting the known (solid
line) and estimated (+) velocity perturbations. The center panel contains the VSP (v) and
seismic (s) time/depth pairs. The solid line shows the modeled depth, or the backprojected
final estimated velocity. The second panel from bottom shows the estimated velocity func-
tion. Notice that we have declared 4 of the 26 layer boundaries as “hard rock” boundaries,
per equation (6), in order to suppress large residual errors from occuring across the obviously
high-velocity-contrast layer boundaries. Inspecting the bottom panel, we see that the residual
appears uncorrelated.
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Figure 4 illustrates that failure to account for correlated errors leads to an undesirable
result. In this case, we add the same correlated depth error as in Figure 3 to simulate seismic
data. Additionally, we add to the seismic data random errors with a standard deviation of
0.024 seconds, four times the assumed standard deviation of the VSP data. Finally, we add
random errors with the same standard deviation (0.024 sec) to the VSP data, in the interval
[1.25 1.46] seconds, to simulate a region of poor geophone coupling. We do not perform the
correlated data error iteration outlined above, but instead simply solve equation (10). The
most important panel to view is the residual panel; without explictly modeling the correlated
errors, least squares optimization simply “splits the difference” between VSP and seismic
error, causing bias in both. The v’s correspond to VSP errors, the s’s to seismic errors.

Figure 5 shows the application of our algorithm to the data of Figure 4. Instantly, we see
that the estimated velocity perturbation and correlated depth error match the known curves
reasonably well. The estimated perturbations don’t match as well as in Figure 3 because of
the random errors. The residual is random, though it appears to be poorly scaled in the region
where we added random noise to the VSP. In fact, we have used the same residual weight as
shown in Figure 2. If we know that we have bad data, we should reduce the residual weight
accordingly. Additionally, we see that the final velocity function doesn’t look as much like the
“known” result of Figure 3, which had no additive random noise.

Figure 6 is the same as Figure 5, save for a change to the residual weight. We reduce the
residual weight in the [1.25 1.46] sec. interval by a factor of 4. We notice first that the residual
is both random and well-balanced. Also note that the estimated final velocity function much
more resembles that of Figure 3, which is good. The modeled data, in the center panel, is
nearly halfway in between the VSP and seismic data in the region of poor VSP data quality,
which makes sense, since we have reduced the residual weight.

The last example underscores an important philosophical point, which we emphasized in
the introduction and in Figure 1. All too often, when different data types fail to match, the
differences are chalked up to the inaccuracy of the “soft data”. In effect, by failing to account
for correlated error, they assume that the soft data has a much larger variance than it really
does. Our algorithm effectively adjusts the mean of the seismic pdf to match the mean of the
VSP pdf.

In this example, we see that after removing the correlated error, the soft data (seismic) has
in fact improved the final result, because the velocity more closely resembles that in Figure 3.
Don't throw away the data! Use physics to model correlated errors and remove them from the
data. It may not be as soft as you think.
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DISCUSSION

We have developed an algorithm to simultaneously invert VSP and seismic time/depth pairs

for interval velocity, in cases when the VSP data contains random errors and the seismic data
contains both random and correlated errors. Our algorithm utilizes a nonlinear iteration, where

we decouple estimation of the correlated depth error and velocity. This decoupling isin general

a risky strategy, and although our results are reasonable, we should explore alternatives.

Extension of the algorithm to 2-D and 3-D is the next important issue. Modern wells are
deviated, and many operators expend considerable resources to acquire “source-over-receiver”
VSP data, in order to ensure vertical raypaths (Noponen, 1995). In this scenario, the subsur-
face is sparsely sampled by the VSP at any given spatial location. The sparsity is the main rea-
son why we parameterize the interval velocity as a piecewise linear function. Layer-constant
velocities are even less parameter-intensive.

We assumed that the errors in VSP data are random. This is likely untrue in practice, but
more research is needed. In the future, we may attempt to estimate correlated error in all data
sources with the nonlinear iteration. We would also like to incorporate additional data types
into our algorithm, such as well logs.
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