Stanford Exploration Project, Report 108, April 29, 2001, page®?1—

oclib
An out-of-core optimization library

Paul Sava

ABSTRACT

This paper introduces rortran90 out-of-core optimization library designed for large
scale problems. The library is centered around the filtering operators and gradient splvers
currently in use at SEP.

MOTIVATION

Migration and modelling are adjoint operators. The industrial practice is to use migration
(the adjoint operator) instead of inversion (the inverse operator), since the adjoint and inverse
operators are not too different from each-other. In various circumstances, however, we can
find it useful to experiment with inversion rather than migration, either to asses the quality of
our approximations, or to shape our images according to various styling goals.

Since our model and data spaces can be rather large for realistic problems, and since the
memory of our computers, although growing, is still not large enough to solve all our problems
in-core, |l introduce a library that can be used to perform out-of-core optimization.

The main features of the library are: an adjustable memory parameter specifying the
amount of data that can be loaded in core at a given time; support for both real and complex
optimization; various gradient solvers mimmicking those introduced in Clearbout’s most re-
cent book (Geophysical Estimation by Example); and various commonly-used operators (like
helicon Of polydiv).

This paper is designed to be more of a reference to the library than a tutorial, although |
also present a simple program which illustrates how the library operates.

INTRODUCTION

Geophysical data analysis often calls for reconstruction of a model of the Earth’s subsurface
(the model,m) from measurements of a physical quantity recorded at some distance (the
data,D). The relationship between the model and the data are often non-linear. However, in

lemail: paul@sep.stanford.edu

2 Sava

practice, we linearize this relationship, so that we can formulate and attempt to solve a problem
in linear form.

Mathematically, we can represent our optimization problem through an equation like
Lm=~D,

whereL is the linearized operator relating the modehlnd the dat® (Claerbout, 1999).

Common industrial practice is to recover the model by applying the adjoint of the operator
£L to the recorded data

m~ L*D,

where L£*, the adjoint operator, is an approximation to the operator we would really like to
apply, £ 1.

The adjoint approximation is not only very convenient to use, but it also appears to produce
good results in practice. However, there are situations when, giverCtisatot at all unitary,
the model we produce is only a distant approximation of the true one.

In the particular case of seismic imaging, the model (reflectivity map) and the data (seismic
data) are extremely large. It becomes therefore, completely infeasible to comptiher
than by an iterative application of the operatbiand its adjoint. Furthermore, the model and
the data are far too large to be kept in the RAM memory of current computers.

A solution for the large size problems is to implement inversion in an out-of-core fashion,
where only limited chunks of the model and data are kept in memory at any given time. This
is the purpose of the optimization library | am introducing in this paper.

Generally speaking, the types of problems that can be solved using this library are regu-
larized inversion in standard form

['Woc]m%["WD],)
€A 0
or in its preconditioned form
WLP WD
RISl @
€l 0

wherew is a regularization operatdW is a weighting operatorP is a preconditioning oper-
ator, and is the preconditioned form an.

The operatorst, 4, W, & are application-dependent and therefore have to be externally
implemented, likely in an out-of-core manner, by the user of the library. All other operations
needed to solve the inversion problem are build tetid

Although other languages allow for more creative implementation, this entire library is
implemented irFortran90 mainly because this is still the programming language of choice in
scientific computing and also the language most commonly used at SEP (Claerbout, 1999).

oclib 3

Applications

Several applications, including some presented in the current report, use this library. Here is a
very brief description of some:

e Wave-equation migration velocity analysis

The inversion solves the problem in Equation (1), where the modi represented
by slowness perturbation, and the dBtas given by the measured image perturbation
(Biondi and Sava, 1999; Sava and Biondi, 2000).

e Least-squares inversion

The inversion solves the problem in Equation (1), where the modil the seismic
image in the angle-domain, aralis the recorded seismic data (Prucha et al., 2001,
Rickett, 2001).

Interface design

The library operates with two fundamental objects, model/data vectors and operators. All
vectors are SEP files stored on a disk, and are represented inside the library as SEP file tags
(Nichols et al., 1994). The operators are function calls that must conform with the following
interface:function oc_operator(adj,add, x_.yy_, opl ... 0p9) result(stat)

where

e stat [logical] is a success flag

adj [logical] is a flag signaling the adjoint operator

add [logical] is a flag specifying if the result of the operator is to be added to the output

x_ [char(len=128)] is a file tag in the model space

yy_ [char(len=128)] is a file tag in the data space

e opl ... op9[integer,optional] are (9) secondary operators used by the main operator.

The remaining of this paper functions as a reference of the main functions and subroutines
available in the current version eélib . Appendices F and F present a simple example (the
Makefile and the main program). Next table presentes a list of the raan90 modules
that compose the library.

4 Sava

Algebraic operations on files moduie file_mod
moduleof_filealgebra_mod
moduleoc_filter_mod

Out-of-core operators modude_adjnull_mod
moduleoc_scale_mod
moduleoc_weight_mod
moduleoc_helicon_mod
moduleoc_polydiv_mod
moduleoc_laplacian_mod
moduleoc_helocut_mod
moduleoc_dottest_mod
moduleoc_combine mod

Out-of-core gradient solvers module solver_mod
moduleoc_solverreg_mod
moduleoc_solverpre_mod
moduleoc_sd_mod
moduleoc_cg_mod
moduleoc_cgstep_mod
moduleoc_cd_mod
moduleoc_gmres_mod

Out-of-core LSQR solvers modude_Isqr_mod
moduleoc_lIsqrreg_mod
moduleoc_lIsqrpre_mod

The appendices A, B, C, and D present a detailed description of the interfaces for the main
functions and subroutines in each module.

ACKNOWLEDGEMENTS

Bob Clapp is my main guide through the SEPIlib maze. Marie Prucha, Biondo Biondi and
James Rickett provided valuable feedback while testing and asiing .

REFERENCES
Biondi, B., and Sava, P., 1999, Wave-equation migration velocity analysis: 19BPH —34.

Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings image
enhancement: Stanford Exploration Proj@ep;//sepwww.stanford.edu/sep/prof/

Nichols, D., Karrenbach, M., and Urdaneta, H., 1994, What's new in SEPLIB?: &=P—-
257-264.

Prucha, M. L., Clapp, R. G., and Biondi, B. L., 2001, Imaging under salt edges: A regularized
least-squares inversion scheme: SEF8-91-104.

oclib 5

Rickett, J., 2001, Model-space vs data-space normalization for finite-frequency depth migra-
tion: SEP-108 81-90.

Sava, P., and Biondi, B., 2000, Wave-equation migration velocity analysis: Episode II: SEP—
103 19-47.

Module oc_file_mod

Sava

APPENDIX A

1. Purpose defines thdileinfotype and basic operations on files.

2. Types
| member| type | description
name| character(len=128) file tag
nd integer number of file dimensions
esize integer file element size
(a) fileinfo n integer(nd) SEPIib n for file
o] real(nd) SEPIib o for file
d real(nd) SEPIib d for file
blon integer number of blocks
bloe integer number of elements in a bloc
blob integer number of bytes in a block

3. Functions and subroutines

(a) subroutine

Purpose:

(b) subroutine

Purpose:

(c) subroutine

Purpose:

(d) subroutine

Purpose:

e caller

(e) subroutine

Purpose:

e caller

oc_allocatefile(file, t_, maxmem)

allocate an object of tyfieinfo

oc_deallocatefile(file)

deallocate an object of tyfjeinfo

oc_infofile(file)
print the file informations

oc_checksimilarity(filel1,file2,caller)

check if two files have identical spaces and elements

. string identifying the caller (optional)

oc_checkspace(filel,file2,caller)

check if two files have identical spaces

: string identifying the caller (optional)

(f) function oc_allocate(tmp,name,esize,n,0,d) result(t)

Purpose:

allocate a new file

t_: file tag

o tmp: flag for temporary files

® name:

® esize

e n,0,d

file name
: SEPIib esize (optional)
: SEPIib n,0,d (optional)

oclib

(g) function oc_clone(tmp, t0_,name, maxmem) result(t)
Purpose: duplicate the structure of a file in a new file
e t : new file tag
e tmp: flag for temporary files
e t0_: Old file tag
e name: new file name

(h) subroutine oc_append(t_,s_, maxmem)
Purpose: append the contents of §ileat the end of file_

(i) subroutine oc_adddim(t_, nnew)

Purpose: add a new axis to a file
e nnew: SEPIib n

() subroutine oc_shapeheader(t_, esize, n,o,d)
Purpose: shape a file header

t_: file tag

e name: file name

e esize . SEPIib esize

e n: SEPIlibn

e o,d : SEPIib 0,d (optional)

(K) subroutine oc_print(t_, maxmem)

Purpose: print the contents of a file

Module oc_filealgebra_mod

1. Purpose defines algebraic operations on files
2. Functions and subroutines

(a) function oc_rdp(tl_,t2_,maxmem) result(dp)
Purpose: dot product of two real files

e t1_: vector of file tags
e t2_ : vector of file tags

(b) function oc_cdp(tl_,t2_,maxmem) result(dp)
Purpose: dot product of two complex files

e t1_: vector of file tags
e t2_: vector of file tags

(C) subroutine oc_assign(t_, sca, maxmem)
Purpose: assign a value to an entire file

e sca: scalar (real or complex)

(d) subroutine
Purpose:

Sava

oc_linear(t0_, ti_, scai, maxmem)
linear combinations of files

e t_: output file tag
e ti_ : vector of input file tags

e scai

(e) subroutine
Purpose:

e scale

(f) subroutine
Purpose:
(9) subroutine
Purpose:

. vector of scalars to multiply the file tags

oc_random(t_, scale, maxmem)
fill a file with random numbers (real or complex)

. scaling factor for the ramdom numbers
oc_complexify(t_, maxmem)

complexify a file

oc_mask(k_,t_,maxmem)

mask a file with another file

e k_: mask file tag
e t : datafile tag

(h) subroutine
Purpose:

oc_product(t0_, ti_, maxmem)
product of files

e t0_: product file tag
e ti_ : vector of input file tags

(i) function oc_norm(t_, maxmem) result(norm)

Purpose:

return the norm of a vector

e t_: vector of file tags

® norm:

(real) norm of the data in file

(j) subroutine oc_normalize(t_, magnitude, maxmem)

Purpose:

normalize a file

e t_: vector of file tags
e magnitude : magnitude of the data in file

Module oc_filter_mod

1. Purpose definitions of the out-of-core helix filters

2. Types
| member| type | description |
(a) rfilter: flt real(:) | filter coefficients
lag | integer(:)| filter lags
| member| type | description |
(b) cfilter: flt | complex(:)| filter coefficients
lag | integer(:)| filter lags

oclib

3. Functions and subroutines

(a) subroutine allocatehelix(aa, nh)
Purpose: allocate space for the filter coefficients

e aa: helix filter (real or complex)
e nh: number of coefficients

(b) subroutine deallocatehelix(aa)
Purpose: deallocate filter space

e aa: helix filter (real or complex)

(C) subroutine buildfilter(ff,x_,fbox,nf,maxmem)
Purpose: build a helix filter

ff . output filter (real or complex)

x_: file tag for the filtering space

fbox : multidimensional array with the filter coefficients
e nf : number of coefficients

(d) subroutine printfilter(ff,nf)
Purpose: print the filter coefficients

e ff : filter (real or complex)
e nf : number of coefficients

10 Sava

APPENDIX B

Module oc_adjnull_mod

1. Purpose nullify the output of an operator
2. Functions and subroutines

(a) subroutine oc_adjnull(adj,add, x_,yy)
Purpose: nullify operator output

Module oc_scale_mod

1. Purpose scaling operator
2. Functions and subroutines

(a) subroutine oc_scale_init(eps,maxmem)
Purpose: initialize the scaling operator

e eps: scaling parameter (real or complex)

(b) function oc_scale(adj,add, x_,yy_,opl ... op9) result(stat)
Purpose: scaling operator

Module oc_weight_mod

1. Purpose weighting operator
2. Functions and subroutines

(a) subroutine oc_weight_init(w_,maxmem)
Purpose: initialize the weighting operator
e w_: Weighting file tag (real or complex)

(b) function oc_weight(adj,add, x_,yy , opl ... op9) resuli(stat)
Purpose: weighting operator

Module oc_helicon_mod
1. Purpose convolution on a helix
2. Functions and subroutines

(a) subroutine oc_helicon_init(aa,maxmem)
Purpose: initialize the helicon operator

oclib 11

e aa: helix filter (real or complex)

(b) function oc_helicon(adj,add, x_,yy_,op1l ... op9) resuli(stat)
Purpose: helical convolution

Module oc_polydiv_mod

1. Purpose polynomial division on a helix
2. Functions and subroutines

(a) subroutine oc_polydiv_init(aa,maxmem)
Purpose: initialize polydiv
e aa: helix filter (real or complex)

(b) function oc_polydiv(adj,add, x_yy_,opl ... op9) result(stat)
Purpose: helical polynomial division

Module oc_laplacian_mod

1. Purpose Laplacian and similar operators.
2. Functions and subroutines

(a) oc_laplacian_init(t_,nf,niter, maxmem)
Purpose: initialize the laplacian operators
e t_: filtering file tag
e nf : number of filter coefficients
e niter : number of Wilson iterations
(b) subroutine oc_laplacian_factor(bb,t_,nf,niter,maxmem)
Purpose: find a laplacian minimum-phase factor
e bb: laplacian minimum-phase factor (real or complex)
e t_: filtering file tag
e nf : number of filter coefficients
e niter : number of Wilson iterations
(c) function oc_laplacian(adj,add, x_,yy_,opl ... 0p9) result(stat)
Purpose: laplacian operator
(d) function oc_ilaplacian(adj,add, x_,yy_,opl ... op9) result(stat)
Purpose: inverse laplacian operator
(e) function oc_hderivative(adj,add, x_,yy_,opl ... 0p9) result(stat)
Purpose: helix derivative operator
(f) function oc_ihderivative(adj,add, x_yy_,opl ... 0p9) result(stat)
Purpose: inverse helix derivative operator

12 Sava

Module oc_helocut_mod

1. Purpose Helix low-cut filter
2. Functions and subroutines

(a) subroutine oc_helocut_init(aa,maxmem)
Purpose: initialize the helocut operator

e aa: helix filter (real or complex)

(b) function oc_helocut(adj,add, x_yy_,op1 ... op9) resuli(stat)
Purpose: helix low-cut filter

Module oc_dottest_mod

1. Purpose dot product test on out-of-core operators
2. Functions and subroutines

(a) subroutine oc_dottest_init(no_add,adj_first,naxmem)
Purpose: init dot product test

e no_add : skip DP test fordd=.true.
e adj_first : start DP test with the adjoint

(b) subroutine oc_dottest(oper, x_,yy_,opl ... op9)
Purpose: dot product test

e oper : out-of-core operator

oclib 13

Module oc_combine_mod

1. Purpose combined out-of-core operators.
2. Functions and subroutines

(a) subroutine oc_chain(A,B,C adj,add, x_yy_,opl ... op9)
Purpose: chain operators (overloaded)

D= Am
D=ASBmM
D=ABCmM
e AB,C: out-of-core Operators
(b) subroutine oc_row(A1,A2, adjadd, x1_x2_,yl_,opl ... op9)

Purpose: row combined operator

mx
[A1 A2 [} =D
ma
e A1,A2: out-of-core operators

(C) subroutine oc_column11(Al,eps,A2, adjadd, x_yl ,y2_, maxmem,opl

op9)
Purpose:
A D
Llm=| Pt
€A2 D2
e A1,A2: out-of-core operators

e eps: scaling factor

(d) subroutine oc_column20(A1,B1,eps, adj,add, x_,yl_yy2 , maxmem,opl

op9)
Purpose:
A1B D
B [P
el D2
e A1,B1: out-of-core operators
e eps: scaling factor
(e) subroutine oc_column21(A1,B1,eps,A2, adjadd, x_yl ,y2_, maxmem,opl

. op9)
Purpose:
A
181 m— Ds1
€A2 D2

14 Sava

e A1,A2,B1 : out-of-core operators
e eps: scaling factor

(f) subroutine oc_column30(A1,B1,C1,eps, adjadd, x_yl ,y2_, maxmem,opl

. op9)
Purpose:
A1B
1B81C1 m— Ds
el D2
e AlB1,C1, : out-of-core operators
e eps: scaling factor

oclib 15

APPENDIX C

Module oc_solver_mod

1. Purpose implements a basic least-squares gradient solver

Lm=~D
R=Lmg—D
iterate {
g=L*R
G=Lg
(m,R) «—step (M,R,g,G)
}

2. Functions and subroutines

(a) subroutine oc_solver_init(niter, naxmem,verb,mmovie,dmovie,resstop)

Purpose: initialize the basic solver

e niter : iterations number

e verb : verbose flag (optional)

e mmovie: model movie output flag (optional)

e dmovie : data movie output flag (optional)

e resstop : Stop iterations at this residual power (optional)

(b) subroutine oc_solver(L,S, x_yy , x0_,res_,opl ... op9)
Purpose: simple solver
e L: out-of-core linear operator
e S: gradient step
e x0_: starting model tag
e res_ : residual tag

16 Sava

Module oc_solverreg_mod

1. Purpose implements a regularized least-squares gradient solver
WL ‘WD
m =
€A 0

[Fe) = mo 7]

iterate {

2. Functions and subroutines

(a) subroutine oc_solverreg_init(niter,eps,maxmem,verb,mmovie,dmovie,resstop,rescale)
Purpose: initialize the regularized solver

e niter : iterations number
e eps: scaling factor
e verb : verbose flag (optional)
e mmovie: model movie output flag (optional)
e dmovie : data movie output flag (optional)
e resstop : Stop iterations at this residual power (optional)
e rescale : rescale model (optional)
(b) subroutine oc_solverreg(L,A,S, x_yy , nreg, W ,k_,x0_,res_,opl ... op9)
Purpose: regularized solver
e L: out-of-core linear operator
e A: out-of-core regularization operator
S: gradient step
nreg : dimension of the regularization output
w out-of-core weighting operator
k_: data mask tag
x0_: starting model tag
e res_ : residual tag

oclib 17

Module oc_solverpre_mod

1. Purpose: implements a preconditioned least-squares gradient solver

Eiat

iterate {
g=[PrLrw el][§]
&1~ s
(p[f2]) s (p[2] 0[E2))
}

m = &p

2. Functions and subroutines

(a) subroutine oc_solverpre_init(niter,eps,maxmem,verb,mmovie,dmovie,resstop,rescale)
Purpose: initialize the preconditioned solver
e niter : iterations number
e eps: scaling factor
e verb : verbose flag (optional)
e mmovie: model movie output flag (optional)
e dmovie : data movie output flag (optional)
e resstop : stop iterations at this residual power (optional)
e rescale : rescale model (optional)
(b) subroutine oc_solverpre(L,P,S, x_yy , npre, W k_,p0_,res_,opl ... op9)
Purpose: preconditioned solver
e L: out-of-core linear operator
e P: out-of-core preconditioning operator
e S: gradient step
npre : dimension of the preconditioning output
e W out-of-core weighting operator
k_: data mask tag
p0_: starting model tag
e res_ : residual tag

18 Sava

Module oc_sd_mod

1. Purpose steepest descent step

som,R,g,G) {
__(eR) m=m-+ag
*TTGEo R=R+aG
}

2. Functions and subroutines

(a) integer function oc_sd(forget,x_,g_,rr_,gg_,s_,ss_,maxmem)

e forget : re-initialize operator

e x_: model file tag

e g_: gradient file tag

e rr_ : residual file tag

gg_: conjugate gradient file tag
s_: previous step file tag

ss_ . conjugate previous step file tag

Module oc_cg_mod

1. Purpose conjugate-gradient descent step

cdm,R,q,G) {
g = lad? S=g+ps
g1l S=G+pS
a——M m=m--+«S
EEREL R=R+aS

2. Functions and subroutines

(a) integer function oc_cg(forget,x_,g_,rr_,gg_,s_,Ss_,maxmem)

e forget : re-initialize operator

e x_: model file tag

e g_: gradient file tag

e rr_ : residual file tag

gg_: conjugate gradient file tag
e s_: previous step file tag

ss_: conjugate previous step file tag

oclib 19

Module oc_cgstep_mod
1. Purpose conjugate-gradient descent step
CGSTEEM,R,0,G) {
A=(G*-G)(S"-9—(S-G)(G* 9
a=—2[+(S*9(G*-R)—(G*-9(S*-R)]
p=-1[-(G"9(G* R +(G"G)(S"R)]

m=m+ag+Bs
R=R+aG+8S

}

2. Functions and subroutines

(a) integer function oc_cgstep(forget,x_,g_,Ir_,gg_,s_,Ss_,maxmem)

e forget : re-initialize operator

e x_: model file tag

e g_: gradient file tag

e rr_ : residual file tag

e gg_: conjugate gradient file tag
e s_: previous step file tag

ss_: conjugate previous step file tag

Module oc_cd_mod

1. Purpose conjugate-directions descent step

com,R,q,G) {
k—1
S: . 3
(@9 9+;ﬂ.s
ﬁl—_(sk.s) k—1
S=G+ > BS
1
. fs*‘RZ m=m-+a«aS
= TE R=R+aS

2. Functions and subroutines

(a) integer function oc_cd(forget,x_,g_,rr_,gg_,s_,SS_,maxmem)

20

Sava

forget : re-initialize operator
x_: model file tag

g_: gradient file tag

rr_ . residual file tag

gg_: conjugate gradient file tag
s_: previous step file tag

ss_: conjugate previous step file tag

Module oc_gmres_mod

1. Purpose generalized minimum-residual descent step

GMREAM,R,0,G) {

k—1
- g=9+> A
Bi Z—%%% 1 l|<—1
e G=G+Y G
1
y = (@9 S=g+vs
(gfi,l-gk—l) S=G+yS
_ g*-g m=m-+4«aS
NGRS R=R+a«aS

2. Functions and subroutines

(a) integer function oc_gmres(forget,x_,g_,rr_,gg_,s_,Ss_,maxmem)

forget : re-initialize operator
x_: model file tag

g_: gradient file tag

rr_ . residual file tag

gg_: conjugate gradient file tag
s_: previous step file tag

ss_ . conjugate previous step file tag

oclib

APPENDIX D

Module oc_Isqr_mod

1. Purpose simple LSQR solver

Lm =~ D
m=0
U=D B=VIUI? U=3U
v=JLU a=lv[2 v=1iv
W=V _
p=a ¢=p
iterate {
U=—aU U=U+Ly
B=VIU|?2 U=3U
V=-—8v V=Vv+L*U
a=IvIZ v=;
p =+ p>+p?
C:B p_:—Co(
P
s=5_ O=sa
¢=z ¢ =s¢
_¢ —_98
tl—p = ’
m=m-+ 1w
W =V +tow
}

2. Functions and subroutines

(a) subroutine oc_lsgr_init(niter,maxmem,verb,movie)
Purpose: initialize the simple LSQR solver
e niter : iterations number
e verb : verbose flag (optional)
e movie . movie output flag (optional)
(b) subroutine oc_Isqgr(L, x_yy_,opl ... op9)
Purpose: simple LSQR solver

e L: out-of-core linear operator

22 Sava

Module oc_Isqrreg_mod

1. Purpose regularized LSQR solver

e m=[0

m=0

[0 ="] p=VIUZ U=1u
v=[Lrw EA*][S"] a=IIVIZ v=1lv
W=V _

p=a b=4p

iterate {

U= [S]=[]e [

B=VIU|?2 U=3U

I
ﬂ
+

R

P=y

c=§ p = —Ca

s=5_ 0=s«

¢=<; ¢ =3¢
_9 —__90

tl—p =)

m=m-+tyw

W =V+tw

}

2. Functions and subroutines

(a) subroutine oc_lsqgrreg_init(niter,eps,maxmem,verb,movie)
Purpose: initialize the regularized LSQR solver
e niter : iterations number
eps . scaling factor
e verb : verbose flag (optional)
e movie : movie output flag (optional)

(b) subroutine oc_lIsgrreg(L,A, x_yy_,nreg,W,opl ... op9)
Purpose: regularized LSQR solver

e L: out-of-core linear operator

oclib

e A: out-of-core regularization operator
e nreg : dimension of the regularization output
e W out-of-core weighting operator

Module oc_Isgrpre_mod

1. Purpose preconditioned LSQR solver

Eiaty

p=0
0] =] p=VIUP u=3u
v=[prews e8] e=VIVIP v=1v
W=V _
p=u ¢=p
iterate {
U U WLP
D o £ it
B=VIUJ? U=3U
V=—pvV V=V+[P*LW el][b’i]
a=lv[2 v=1iv
p=yp*+p?
c=12 p=—Ca
s=5_ b=s
¢>=<; » =3¢
_¢ __0
tl—p b= ’
p=p+tw
W =V+tow
}
m=p

2. Functions and subroutines
(a) subroutine oc_lsqgrpre_init(niter,eps,maxmem,verb,movie)
Purpose: initialize the preconditioned LSQR solver

e niter : iterations number
e eps: scaling factor

24 Sava

e verb : verbose flag (optional)
e movie . movie output flag (optional)
(b) subroutine oc_Isgrpre(L,P, x_yy_,npre,W,opl

Purpose: preconditioned LSQR solver
e L: out-of-core linear operator
e P: out-of-core preconditioning operator
e npre : dimension of the preconditioning output
e W out-of-core weighting operator

. op9)

oclib

APPENDIX E

Spike n1=50 n2=30 nsp=6 \
k1=17,34,27,20,33,41 11=17,34,27,20,33,41 \
k2=1,2,15,18,29,30 12=1,2,15,18,29,30 \
mag=-1,1,1,-1,1,-1 >$@

d.H: m.H $B/OCsimple
< m.H Window >d.H
OCsimple operation=1 model=m.H data=d.H maxmem=600 >$n

viewl: mH d.H
< m.H Merge axis=3 space=n d.H | Window |\
Grey pclip=100 gainpanel=a eout=1 > j.T
< j.T Grey color=g bias=0.5 | Tube

i.H: d.H $B/OCsimple
< m.H Window | Scale rscale=0. >$@
OCsimple operation=2 model=i.H data=d.H \
maxmem=600 niter=20 eps=0.02 verb=y >$n

view2: d.H i.H mH
< m.H Merge axis=3 space=n d.H i.H| Window |\
Grey pclip=100 gainpanel=a eout=1 > |.T
< j.T Grey color=g bias=0.5 \
tittes=model:data:inversion | Tube

dot: m.H d.H $B/OCsimple
OCsimple operation=0 model=m.H data=d.H maxmem=600 >$n

25

26 Sava

APPENDIX F

program OCsimple

use sep

use oc_global_mod

use oc_file_mod

use oc_dottest_mod

use oc_cgstep_mod

use oc_solver_mod

use oc_laplacian_mod

implicit none

logical o verb

character(len=128) :: x_\yy_,t , name

integer :» maxmem, stat, niter, nf, operation

type(fileinfo) : file

type(cfilter) D aa

real oeps

call sep_init()

call from_param("operation”,operation,0)
call from_param("maxmem",maxmem)
call from_param("verb",verb,.false.)

call from_param("nf",nf,5)

call from_param("niter",niter,10)

call from_param("eps",eps,1.0)

x_= "model"; call auxinout(x_)
yy_="data" ; call auxinout(yy_)
name="test.H"; t_=oc_clone(F, x_,name,maxmem)
call sep_close()

Il operator init
call oc_allocatefile(file, x_, maxmem)
call oc_infofile(file)
do while(2*nf+1 > file%n(1))
nf=nf-1
end do
call oc_deallocatefile(file)
call oc_laplacian_init(x_,nf,10,0.0,maxmem)

select case(operation)
case(0) !! dot product test
call oc_dottest_init(maxmem=maxmem)
call oc_dottest(oc_laplacian, x_,yy)
case(l) !! simple forward operator
stat = oc_laplacian(F,F,x_,yy)
case(2) !! inversion
call oc_solver_init(niter,maxmem,verb)
call oc_solver(oc_laplacian,oc_cgstep,x_,yy_)
case default
call seperr("missing operation")
end select

call exit (0)
end program OCsimple

