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Amplitude-preserved wave-equation migration

Paul Sava and Biondo Biondi

ABSTRACT

We analyze the amplitude variation as a function of reflection angle (AVA) [for
angle-domain common image gathers (ADCIG) produced via wave-equation migration.
Straightforward implementations of the two main ADCIG methods lead to contradictory,
thus inaccurate, amplitude responses. The amplitude inaccuracy is related to the fact that
downward-continuation migration is the adjoint of upward-continuation modeling, but it

is only a poor approximation of its inverse. We derive the frequency-wavenumber domain
diagonal weighting operators that make migration a good approximation to the inverse
of modeling. With these weights, both ADCIG methods produce consistent results| The
main applications that follow from this paper are true-amplitude migration and pseudo-
unitary modeling/migration, usable for iterative inversion. The two most important fagtors
that degrade the accuracy of wave-equation ADCIGs are the limited sampling and pffset
range, combined with the band-limited nature of seismic data.

INTRODUCTION

Traditionally, migration velocity analysis and AVO employ offset-domain common-image
gathers, since most of the relevant information is not described by zero-offset or stacked im-
ages. However, it is difficult to produce these gathers with wave-equation migration because
the offset dimension of the downward continued data shrinks with depth. A solution to this
problem is to use angle-gathers instead of offset-gathers. Angle-domain common image gath-
ers (ADCIG) obtained by wave-equation migration are very powerful at measuring the quality
of migration and the accuracy of the velocity model.

ADCIGs are attractive because they provide straightforward information for amplitude
analysis, that is, amplitude versus angle (AVA) instead of the more common amplitude versus
offset (AVO) analysis. The main focus of this paper is to evaluate how accurate is the the
amplitude response of wave-equation migration as a function of reflection angle.

Angle-domain common-image gathers are representations of the seismic images sorted by
the incidence angle at the reflection point. Angle-gathers can be obtained using wave-equation
techniques either for shot-profile migration, as described by de Bruin et al. (1990), or for shot-
geophone migration, as described by Prucha et al. (1999). In either case, angle-gathers are
evaluated using slant-stacks on the downward continued wavefield, prior to imaging. However,
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decomposing the downward continued wavefield before imaging produces angle-gathers as a
function of the less intuitive offset ray-parameter instead of the true reflection angle. Angle-
domain gathers can also be computed by slant-stacking the image, instead of the downward
continued wavefield. This alternative procedure directly produces angle-gathers as a function
of reflection angle. In both cases, the slant-stack transformation can be more conveniently
performed by a radial-trace transform (RTT) in the frequency-wavenumber domain (Ottolini,
1982).

AVA analysis requires that the procedures used to compute ADCIGs preserve the ampli-
tude of the reflections as a function of angle. It is thus puzzling that straightforward imple-
mentations of both ADCIG methods produce contradictory amplitudes, and that downward-
continuation migration is not a good approximation of the corresponding upward-continuation
modeling for either method.

To solve the puzzle, we must take into account the weighting function that is introduced in
the migration process by the imaging step. We show that this weighting is well approximated
by a diagonal operator in the frequency-wavenumber domain. Since the two methods for
computing ADCIGs perform a slant-stack at different stages, one before imaging and the
other one afterimaging, the corresponding weighting functions are different. Once the weights
are taken into account, the AVA responses produced by the two methods are consistent, and
migration is an approximate inverse of forward modeling. We find that, when restricted to flat
reflectors, the weight we obtain for amplitude compensation is identical to those derived by
Wapenaar et al. (1999).

According to the physical model for reflection data, the weights can be set to make migra-
tion a good approximation of a linearized inversion. We adopt the physical model proposed by
Stolt and Benson (1986) and define the appropriate weights for both methods used to compute
ADCIGs. Modeling and migration can also be easily made pseudo-unitary, if needed for an it-
erative estimation procedure. We achieve this by splitting in half the weighting factor between
modeling and migration.

MODELING AND MIGRATION AMPLITUDES

This section sets the general framework of amplitude analysis and correction in relation to
wave-equation modeling and migration.

The data D) recorded at the surface can be modeled from the imbgby( integrating
over depth £) all the contributions of the reflected wavefield

D(w):f()+oodz é?| (2), 1)

where the vertical wavenumbel,f, given by the double square root (DSR) equation, is the
sum of two componentsk,s for continuing the sources, ang; for continuing the receivers

(k; = kzs+ Kzr). The expressions fdi,s andk,, depend on the migration type and CIG type.
However, the discussion in this section is general and independent of the particular expressions
for ks andky,.
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The image is linked to physical parameters, such as reflectiityy a reflection operator
(G) that relates the upgoing wavefield, to the downgoing wavefield, such taab R. The
form of this reflection, or scattering, operator depends on the physical model adopted for the
reflection process.

In the case of constant velocity, for which we can use the definitions introduced by Clay-
ton and Stolt (1981) and Stolt and Benson (1986), the oper&ipis(a simple frequency-
wavenumber domain multiplication defined by

i ws?

G= .
4'kZSkZI’

(@)

Amplitude correction in constant velocity

Migration is, by the standard definition, the operation adjoint to forward modeling. It is per-
formed by the downward continuing the recorded wavefield and imaging at zero time:

[(2) = /_ o dw e %ZD (w). (3)

0.9)

We substitute Equation (1) into Equation (3), and expand the integral in Equation (1) to nega-
tive depth, for which the image is zero, by definition:

—— +OO H +OO / H /
16 :/ dw e_"‘Zz/ dz k2| (z) (4)
We then change the integration variaklé¢o k, and obtain:
— +00 f da) +oo /o /
— —ikzz 7% kzz
|(z)_/_oo dk, e dsz_oo dZ é |(z). (5)

The pair of integrals in Equation (5) describe forward and inverse Fourier transforms, and
thus the effect of chaining modeling and migration on the image is simply the equivalent of
applying the Jacobiatiw /dk;. This result is valid only for real values &§, which is what we
want, since we are not interested in the wavefield component for hisbcomes imaginary
(that is, we neglect evanescent waves).

In constant velocity, the frequency-wavenumber representation of the Jacobian is simply a
multiplication:

— do
(k) = d_kzl(kZ)
dw
= d—kZG(kz)R(kz)- (6)

The Jacobian weighting is introduced by the imaging step, therefore, the Jacobian depends
on the coordinates used to define the wavefield during imaging: constant ray-parameter or
constant offset wavenumber.
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In matrix notation, Equation (1) is written
d=Li =LGr, (7)

whered, i, andr are respectively the data, image, and reflectivity vectGrss a diagonal
matrix representing the reflection operator, &nd the modeling operator. With this notation,
Equation (5) becomes

-
| =

L*d = L*Li = Wi = WGr, (8)

whereW is a diagonal matrix representing the Jacoldandk,.

Amplitude correction in variable velocity

The results presented in the preceding subsection are strictly valid in constant velocity. When
velocity varies, the propagation operatdr) (is not only a constant magnitude phase-shift
multiplication, but also includes an amplitude term that changes with depth and horizontal
location. Therefore, the integrals in Equation (5) cannot be interpreted as Fourier transforms
anymore. Clayton and Stolt (1981) show how this issue can be theoretically side-stepped by
datuming the data just above each reflector, and by approximating the velocity as constant in
the imaging interval. In practice, this issue is taken care of by evaluating the Jacobian and the
reflection operato6, using the local velocity at the imaging location.

When the continuation equation includes the amplitude té&)mEquation (7) becomes
d = LAi =LAGr. (9)
Since conventional migration is the adjoint of modeling, Equation (8) becomes

o~

= A"L*d = A*L*LAI = A*WAiI = A*"WAGr, (10)

In layered media, the frequency-wavenumber amplitude term of the continuation operator
can be computed using the WKBJ approximation as a diagonal real operator (Clayton and
Stolt, 1981):

A — \/ kZS(Z) kZI’ (Z) (11)

kys(z = 0) kyr (z=0)’

wherek,s andk,, are the depth wavenumbers associated with source and receiver.

APPLICATIONS OF AMPLITUDE-PRESERVED MIGRATION

Two important applications derive from the theoretical development of amplitude-preserving
migration: “true-amplitude” migration operators, and pseudo-unitary modeling/migration op-
erators used in iterative inversion.
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True-amplitude migration
We define “true-amplitude” migration as the process of recovering the amplitude of the reflec-
tivity vector given perfect data, infinite bandwidth and aperture.

The expression for the true-amplitude migration operator is
L =G A~ twiLx, (12)
which we can immediate verify to be inverse to modeling using Equation (9):

Lid=G AW IL*LAGr =r. (13)

Even in the simple case of layered media, the operatisrsingular for evanescent waves
propagating at the surface, and null, thus not invertible, for evanescent waves at depth. As
discussed in the preceding section, we are not interested in the evanescent energy, and thus we
are not even trying to inveA for those wavefield components.

Pseudo-unitary modeling/migration

The “true-amplitude” migration defined in Equation (12) is a good approximation in the case
of mild velocity variations, commonly labeled as “time-migration” problems. In complex
overburden, the so called “depth-migration” situations, the reflectors are sparsely and unevenly
illuminated (Rickett, 2001), therefore the amplitude corrections described in the preceding
sections may become a poor approximation. In these cases, the amplitudé yesmeither
diagonal nor invertible because of reflections becoming evanescent and/or moving out of the
acquisition aperture. Direct inversions are not likely to produce good results, therefore we have
to solve the inversion problem using iterative schemes (Prucha et al., 2001). Thus, instead of
simply applying “true-amplitude” migration, we iteratively solve the least-squares problem
described by the optimization goal

(LAG)r ~d (14)

where the operatdrAG fits the reflectivity modelr() to the recorded datal).

In order to achieve fast convergence, the modeling operator has to be as close to unitary as
possible. Following the discussion in the preceding sections, we can define the pseudo-unitary
operator as

L, =LW 3 (15)

for which it is immediate to verify that ;L =1.

With this new operator, our least-squares problem may be rewritten as:

(LUW%AG)r ~d.
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We can redefine the model variable as a new, preconditioned variable
1
p=W2AGr,
which changes the optimization problem to the simple equation:

Lup ~ d. (16)

ADCIG METHODS

Angle-domain common-image gathers are the instrument we use to analyze the amplitude
variation with reflection angle. As we discussed in in an earlier section, ADCIGs can be
conveniently formed in the frequency domain. Following the derivation of Fomel (1996), if

S R X

Figure 1. A scheme of reflection
rays in an arbitrary-velocity medium.

[pauizioca|INR z

we consider that, in constant velocity medig the traveltime from the source to the reflector
and back to the receiver at the surfacke,2the offset between the source and the recewer,
is the depth of the reflection point,is the geologic dipy is the reflection angle, arglis the
slowness (Figure 1), we can write

ot

ph:% = 2scosxSsiny a7)
ot
37 = 2SCOSw COSy . (18)

Combining Equations (17) and (18), we find that

0Z
tany = — —| . 19
4 9., (19)
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Equation (19) is derived in constant velocity media, but it remains perfectly valid in a differ-
ential sense in any arbitrary velocity media if we considéo be the effective offset at the
reflector depth and not the surface offset (Figure 1).

In the frequency-wavenumber domain (Sava and Fomel, 2000), formula (19) takes the
trivial form

tany = ——. (20)

This equation indicates that angle-gathers can be conveniently formed with the help of frequency-
domain migration algorithms (Stolt, 1978). Furthermore, wave-equation migration is ideally
suited to compute angle-gathers using such a method, since the migration output is precisely
described by the offset at the reflector depth, which is a model parameter, and not by the
surface offset, which is a data parameter (Biondi, 1999).

We can also recognize that Equation (17) describes nothing but the ray parameter of the
propagating wave at the incidence with the reflector. Using the definition
ot
%1
it follows that we can write a relation similar to Equation (20) to evaluate the offset ray pa-
rameter in the Fourier-domain:

Pnh =

k
Pr=—. (21)
w
Both Equations (20) and (21) can be used to compute image gathers through radial trace
transforms (RTT) in the Fourier domain. The major difference is that Equation (20) operates
in the space of the migrated image, while Equation (21) operates in the data space.

The two methods are also different in three other ways:

1. The image-space method (20) is completely decoupled from migration, therefore con-
version to reflection angle can be thought of as a post-processing after migration. Such
post-processing is interesting because it allows conversion from the angle domain back
to the offset domain without re-migration (Figure 2), which is, of course, not true for
the data-space method (21), where the transformation is a function of the data frequency

(@).

2. From Equation (17), it follows that offset ray parametgy)(is also a function of the
structural dip &), which is not true for the reflection anglg ) estimated in the image
space. The angles we obtain using Equation (20) are geometrical measures, completely
independent on the structural dip. For AVA purposes, it is also very convenient to have
the amplitudes as a function of reflection angle and not offset or offset ray-parameter.

3. Both methods require accurate knowledge of the imaging velocity. The difference is that
the data-space method is less sensitive to the location of velocity boundaries. However,
conversion frompy, to reflection angle is also critically influenced by errors in the
velocity maps.
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Figure 2: Synthetic example of conversion between the angle and offset domains in the image
space. Left panel: synthetic angle gather. Middle panel: conversion from angle to offset.

Right panel: conversion back to the angle domgiaul2-polarity [NR]

SOURCES OF INACCURACY

Figure 2 shows a synthetic example of conversion from the angle domain to offset domain
and back to the angle domain. The original ADCIG is described by polarity reversal at zero
incidence angle. After conversion to offset and back to angle, the image gather displays the
same polarity reversal. The angle-gathers are also flat, which indicates that the transformation
is kinematically correct.

The obvious question that remains to be addressed is how reliable in general are the am-
plitude versus angle estimates for images obtained using wave-equation migration.

As mentioned earlier, we compute the image-gathers either in the image space, or in the
data space via Fourier-domain radial-trace transforms. Analysis of our procedure reveals four
major sources of distorsion of the amplitude response which are: (1) the limited offset and
depth wavenumber bandwidths, (2) the limited temporal frequency bandwidth, (3) the in-
correct implementation of RTT, and (4) the unweighted imaging condition. In the next four
subsections, we discuss each of these sources of error, and refer to image gathers in the angle
domain, although the discussion is fully applicable to offset ray-parameter, as well.

We demonstrate the various transformations and sources of inaccuracy using a very simple
synthetic model (Figure 3), which is a perfectly focused image (a spike in the offset domain).

Limited offset and depth wavenumber bandwidths

One of the main sources of amplitude error is the finite bandwidth of the dieptand offset

(kn) wavenumbers (Figure 4). We apply RTT in the Fourier domain using Equations (20). In
practical terms, this transformation amounts to a horizontal stretkf atf constank,. How-

ever, sincek, andky are limited in range, we can correctly evaluate the angle transformation
only within a finite angle range~ymax +¥max).- The maximum angles to which our trans-
formation is correct is a function of image sampling on offset and depth (Figuse.4).can

be evaluated from the data, but cannot be modified during processing. We simply need to be
aware of it and limit our analysis to the proper angle range.
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Figure 3: Synthetic offset-gather. From left to right, Fourier-domain representation, space-
domain representation, and amplitude response. The image is represented by one single per-

fectly focused event at a depth of 0.5 kipaul2-offam [NR]
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Figure 4: Truncation of the depth and offset wavenumber bandwidths limits the range over
which we can compute angle-gathers.kA— ky, offset-gather (left panel) is transformed by
RTT to ak, — y angle-gather (right panel}max is the maximum angle for which the RTT is

not affected by truncation of the, bandwidth, paul2-khband[NR]
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Limited temporal frequency bandwidth

Another major source of inaccuracy is the limited temporal frequency band of the recorded
data. Figure 5 schematically explains this phenomenon. We begin with an image gather in the
offset domain, perfectly described in its limitégd— ky, band (a). From the image we model
data described im — k, coordinates (b). In the case of wide temporal frequency bands, we
record the entire data (b, black shape). After migration, we return to the image domain (c,
black shape) described lry — ky, coordinates, from which we compute angle-gathers by RTT

(d, black shape). Inverse Fourier transform al&pgrings us back in the angle domain, with
correct amplitudes for all angles smaller thagx.

Alternatively, we can record a narrower frequency band (b, gray shape). After migration,
we obtain the image as described by the DSR equation (c, gray shape). Conversion to angle
follows the same style as in the full-band case (d, gray shape). The major distinction between
the two cases is that we do not recover correct amplitudes even for g, +ymax) range.

Again, this second cause of inaccuracy is related to data sampling and cannot be corrected
during processing. One possible way to recover consistent amplitudes is to low-pass-filter the
angle-domain gathers to appropriate maximum depth wavenunibgrs (

The same logic applies to offset ray-parameter gathers, as depicted in Figure 5 (e,f).

RTT implementation

A third source of inaccuracy is the actual implementation of the radial-trace transform. In

theory, RTT can be implemented either as a push operator (loop over input) or as a pull op-
erator (loop over output). Figure (6) shows an example with a push implementation (from

thek, — ki, domain to theék; — y domain), and Figure (7) shows a pull implementation (in the

k; —y domain from thek; — ki, domain).

As expected, the push implementation leaves empty regions ik, thez domain, while
the pull implementation fills the entire domain. After inverse Fourier transform, the ampli-
tude responses in the two cases are completely different (Figure 8): the pull implementation
generates flat amplitudes, while the push implementation does not.

Under those circumstances, it would be tempting to consider just the pull implementation.
However, inversion for angle-domain regularization, requires implementations for both the
forward and adjoint operators. Therefore, if we use pull in one transformation, we need to use
a corrected push in its adjoint (Claerbout, 1995). This correction is given by the Jacobian of
the transformation frorky, to y or py.

Figure 9 shows the angle-domain representation for the ideal offset-gather in Figure 3.
Since we use a wide temporal frequency band and a pull implementation of RTT, the amplitude
response is flat for the whole usable angle range.
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e

Figure 5: Schematic simulation of migration, modeling and conversion to the angle domain.
For angle-domain gathers, start with the image in (a), model to obtain the data in (b), migrate
(c), and convert to angle (d). For offset ray-parameter gathers, start with the image in (a),
model to obtain the data in (b), convert to offset ray-parameter in the data space (e), and image
(. The black shapes correspond to a wide temporal frequency band, and the gray shapes

correspond to band-limited datpaul2-adcony[NR]
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Figure 6: Conversion from offset-domain to angle-domain image gathers. The push imple-
mentation of RTT leaves empty spaces that degrade the amplitudes. This effect can be partially
corrected by weighting with the transformation Jacob\ipaulZ-angpushHN R]




SEP-108 Amplitude-preserved migration 13

offset (km) reflection angle (degrees)

-12 —-08 -04 0 0.4 0.8 1.2 -80 -60 —-40 -20 O 20 40 60 80

(wsy) yydep
¥0 20

90

8'0

(wsy) yydep
7 80 90 $0 20 0

OFFSET x—domain ANGLE x—domain
offset wavenumber (1/km) reflection angle (degrees)

-30 —20 —10 0 10 20 30 -80 -60 —-40 -20 0 20 40 60 80
. . . . . .

0T

(ws{/1) Jequinusaem yiydap
(w /1) Jequinussem yidep

02
0

m
M LA

OFFSET k—domain ANGLE k—domain

Figure 7: Conversion from offset-domain to angle-domain image gathers. The pull imple-
mentation of the RTT fills the entire usable space, therefore the amplitude response is correct.
paul2-angpullA[NR]

ADCIG push amplitudes ADCIG pull amplitudes
o o
o | o |
5 8
J o Z o
a o
2o 2o
o) o
8 8
=Ny =y
= o = o
£~ I
=5 o}
@ (0]
L iy
@ [o9)

—80 —60 —40 —20 0 20 40 60 80 —B0 —60 —40 —20 0 20 40 60 80
reflection angle (degrees) reflection angle (degrees)

Figure 8: Amplitude response for RTT implemented as unweighted push (left), and pull

(right). Ideally, the amplitude should be constant at all angfesul2-ampA [NR]



14 Sava and Biondi SEP-108

Incorrect imaging condition

A more subtle source of error is related to the implementation of the modeling operator and
its adjoint. In brief, conversion from the data space to the image space involves a change of
coordinates from temporal frequenay) o depth wavenumbeky). A correctimplementation

of this transformation requires weighting by the transformation Jacobian. Figures 10 and

11 show the amplitude responses of modeling followed by migration without the Jacobian.

Although the angle-gathers are kinematically correct (flat), the amplitude responses are not.
More details on the Jacobian weighting follow in the next section.

TRANSFORMATION JACOBIANS

True-ampliude migration and the pseudo-unitary modeling/migration pair make use of the
diagonal operator of the imaging Jacobian. In this section, we derive the analytical expression
of this operator.

The two methods used to compute ADCIGs differ by the stage at which they operate: after
imaging for ADCIGs with output in reflection-angle, and before imaging for ADCIGs with
output in offset ray-parameter. Imaging takes place in different spaces as well: at c@pstant
for reflection-angle image gathers, and at conspgifor offset ray-parameter image gathers.
Consequently, the imaging Jacobians have different expressions.
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Figure 9: Ideal angle-gather for wide temporal frequency and pull implementation of RTT.
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Angle-gathers

For reflection-angle gathers, the dispersion relation used to downward continue the wavefield
is given by the DSR equation:

kz = kzs+ kzr

l - nd 2 1 - -
— E\/(Zcos)z—‘km—kh‘ +§\/(2ws)2—‘km+kh

2
| (22)
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wheres is the local slownesss,;s andk;, are respectively the vertical wavenumber for the
source and receiver components, dgdand k,, are respectively the midpoint and offset
wavenumbers. The Jacobian for this transformation is thus the common prestack Stolt migra-
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Figure 10: Reflection-angle gather implemented using Equation (20). We do not use the
correct weighting of the transformation Jacobian, therefore the amplitudes are distorted.
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Figure 11: Offset ray-parameter gather implemented using Equation (21). We do not use
the correct weighting of the transformation Jacobian, therefore the amplitudes are distorted.
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tion Jacobian:

dw

dk; kn=const

-1
L)

As mentioned in the preceding sections, in the case of variable velocity media, those quantities
are evaluated at the reflector location. For an arbitrary 2-D reflector geometry (Figure 1), we
can rewrite Equation (23) as

-1
1 1

cos[y —«] * cos[y + ]

Wy, = (24)

wherex is the structural dip angle, andis the reflection angle.
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For flat reflectors, defined U{(n = 0 anda = 0, the Jacobian takes the simple form

1
Wy, = 2—SCOSy. (25)
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Figure 12: Reflection-angle gather computed in the image space. The weighting factors restore
correct amplitudes. Compare with the theoretical response in Figurpdi2-chmig [NR]
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Figure 13: Offset ray-parameter gather computed in the data space. The weighting factors

restore correct amplitudegpaul2-cpmig [NR]

Ray-parameter gathers

For the case of offset ray-parameter gathers, we can rewrite the DSR equation (22) as

kz = kzs+ kzr
1 - 121 - L2
— E\/(20)5)2—‘|<m—wph +§\/(2ws)2—‘km+wph‘ (26)
In this case, the imaging Jacobian becomes
dw
W -
> de ph=const
. N L . N Lol
408+ (Kn— o) B 4ws?— (Kn+ph) - Py
= + , (27)
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which can be re-arranged as:

- 1

5h'5h wS WS km-ﬁh wS WS
W, = - —ti ——= . 28
P {(S as >(kzs+kzr)+ 4o (kzs kzr>i| (8)

For an arbitrary 2-D reflection geometry (Figure 1), we can write Equation (28) as

B, -1
Ph - Ph 1 1 Km - Ph 1 1
Wy = | (s— _ ,
P [(S 4s ) <cos[y —a " cos[y +a]> " Tdas (cos[y —a] cos[y —|—a]>i|

(29)
For flat reflectors, defined U{(n = 0 anda = 0, the Jacobian takes the simple form
1 1
W, =——, 30
Ph ™ 2scosy (30)
which is equivalent to the weighting factor introduced by Wapenaar et al. (1999).
For the case of flat reflectors, we also have
1 1
= ) 31
Pn 482 th ( )

which explains the opposite behavior of tinecorrectedmigration amplitudes for reflection-
angle gathers (Figure 10) and offset ray-parameter gathers (Figure 11).

After we apply the Jacobian weights, we obtain the corrected angle-gathers shown in Fig-
ures 12 and 13. As expected, the amplitudes are constant for the entire usable angular range.

JACOBIAN FOR COMMON-AZIMUTH MIGRATION

The dispersion relation of 3-D common-azimuth migration can be written as a cascade of 2-D
inline prestack migration and 2-D zero-offset crossline migration (Biondi, 1999):

1 1
oo = 5y 20— e K 2+ 5 2052 e+ kil

ke = /K& —kn3. (32)

We can derive the expression for the common-azimuth Jacobian by simply applying the
chain rule to Equation (32):

dkCA KA dk,,

= . 33
dw dk;, dw (33)

If we note that
dk§3A B Kz,
dkz, - KGA

(34)
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we obtain the common-azimuth Jacobian:

CA _ kg:A 2D
WA = 22w (35)
Z

X

whereW?P is the 2-D version of the Jacobian we derived in the preceding sections, either for
reflection-angle ADCIGs, Equation (23), or for offset ray-parameter, Equation (28).

However, computing the reflection operator weight, Equation (2), and the WKBJ ampli-
tudes, Equation (11), requires us to evaluate separately the dquecel receivek,, compo-
nents of the dispersion relation. Therefore, for the “true-amplitude” migration weights, Equa-
tion (12), we need to use the more complicated expression for the common-azimuth dispersion
relation as introduced by Biondi and Palacharla (1996).

In addition to the amplitude terms we have discussed in the preceding sections, “true-
amplitude” common-azimuth migration requires an additional correction that takes into ac-
count that its dispersion relation is obtained by a stationary-phase approximation of the full
3-D DSR equation. We, therefore, need to augment the amplitude term in Equation (9) by
another factor, which results from stationary-phase approximation theory (Bleistein and Han-
delsman, 1975):

(36)
where the second derivative kf* with respect td, is:
d?kgh (25)% — (K — Kny)®
2 — _o13/2
Aoy (2052 — (ke — Kin? = (kg — i)
2 2 —\2]¥2
[(2009)% = (ke i) = (keny + Ky )]
with
1 2 2 1 2 2
_ 51/ (2wS)” — [Kmy + Knx[“ — 54/ (20S)* — [Kmy — Knx|
khy=km 2\/ mx X 2\/ mx X . (38)

y
%\/(2605)2 — |Kmx + khx|2+ %\/(20)5)2 — |Kmyx — khx|2

This additional correction factor includes both a phase shift component and an amplitude
component which increases with depth. It has thus a behavior similar to the correction term
that is often used to transform 2-D data recorded widint sources and receivers to 2-D data
recorded witHine sources and receivers (Clayton and Stolt, 1981). The physical explanation is
also analogous: Common-azimuth migration assumes that the data were recorded for all values
of the crossline offseth) and then stacked alorig,. The inverse ofAgi,:transforms the data
recorded at zero crossline offset into the data “expected” by common-azimuth migration.
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Figures 14-16 demonstrate the effects of applying the different weights in common-azimuth
migration. These images are obtained by migrating a synthetic data set containing five dipping
reflectors with dips from 0 to 60 degrees (Biondi, 2001).

Figure 14 shows a subset of the migration results. The front face of the cube displayed in
the figure is an in-line section stacked oy®r The other two faces are sections through the
prestack image as a function of the offset ray paramegger (Those images are obtained by
migration without any weighting factors. Figure 15 shows the same subset as in Figure 14, but
obtained by applying all the appropriate weights and the phase shift related to the stationary-
phase approximation. The weights balance the amplitudes along the reflector, so that the
dipping reflectors are comparable with the flat one.

Figure 16 shows one particular ADCIG, detailing the effects of each type of weighting:
no weights (Figure 16a), Jacobian and modeling weights (Figure 16b), Jacobian, modeling
and WKBJ weights (Figure 16c), and Jacobian, modeling, WKBJ and phase-shift weights
(Figure 16d).

(w/s) xuq
8600070

004

(w) 1da(
00TT

00GT

0 200 400 600 800 1000 1200
In-line midpoint (m)

Figure 14: A subset of the results of common-azimuth migration of the synthetic data set.
The front face of the cube is an in-line section stacked alppg The other two faces are
sections through the prestack image. The migrated cube is obtained from migration without
any weighting. The amplitudes of the dipping reflectors are lower than expected, and the
whole image has the wrong phaﬁqnaulZ-CA-puII-none-vﬁD[NR]

VARIABLE-VELOCITY JACOBIANS

The transformation Jacobians, given by Equation (23) for reflection-angle gathers and by
Equation (28) for offset ray-parameter gathers, are strictly speaking valid only for constant
velocity media. In the case of variable velocity, downward continuation is implemented in the
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(w/s) xuq
860000

004

(w) 1da(
0011

0061

0 200 400 600 800 1000 1200
In-line midpoint (m)

Figure 15: A subset of the results of common-azimuth migration of the synthetic data set. The
front face of the cube is an in-line section stacked alppg The migrated cube is obtained
from migration with all the appropriate weights and the stationary-phase phase shift. The
amplitudes of the dipping reflectors are comparable with those of the flat reflector, and the
whole image has the correct phaérpaul2-CA-puII-WKBJ-stat-vq)[N R]

mixt w —k andw — x domain. The dispersion relation is approximated using an expansion of
the DSR equation. In one of the most usual forms, the dispersion relation can be written as

kz = kzs+ kzr
1 - |2 dk;
ks = 2 (208)” — |ks %kzo+E s=so(SS_SO)
1 -2 dk
ke = 5/ (208~ k| ~ kg + d—z (5 —%0)- (39)
S S=S0

Equations (39) give the effective dispersion relation for which we need to implement the Ja-
cobian weighting.

Appendix A outlines the derivation for the expresion of the Jacobian in variable velocity
media. For the case of migration with output in offset, the Jacobian expression is:

2 2 -1
Kzs Kzs Kzo Kzr, Kzr, Kzo

(40)

where(ss — S) and(s — ) are respectively the slowness perturbations at the source and re-
ceiver. In constant velocity mediéss — sp) = 0 and(s — ) = 0, Equation (40) obviously
takes the same form as Equation (23) we derived earlier for the case of constant velocity.
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Figure 16: ADCIGs obtained by common-azimuth migration with different amplitude
weights: a) No weights, ki)z—lwghAx_l (Jacobian), cB‘lA—lwgfx_l (Jacobian and WKBJ),

d) A;titG—lA—lwgfx ~! (Jacobian, WKBJ, and stationary phase). The relative amplitudes of
the dipping reflectors are modified by the different migration weig[paulZ-ClG-am;?[NR]
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For the expressions of all Jacobians, we need to compute the quasitity which may
lead to numerical instability whek, approaches zero. A simple way so stabilize the Jaco-
bian, which we have used for the current examples, is to add a small positive quantity to the
denominator, and compuies/ (k; + €).

Another approach, which we have not tested yet, but which appears to have the potential
to be more accurate, is to write

wS . wS
k, 12
1/ (2ws)2— (k(
1
R (41)
12
k
" 2082

For small valuesf x = ‘E‘ /[2ws] we can computes/ k; using the following Taylor series
expansion:
1 1 3 5 35
~ 14 x4 x4 —x8 4+ —x8
J1-—x2 +2 +8 +16 +128
This expansion is very similar to the transformation used by Huang et al. (1999) for the ex-
tended Local Born Fourier migration method, or by Sava and Biondi (2000) in wave-equation
MVA. This interesting possibility, however, awaits future research.

F.. (42)

REAL DATA

We now provide, as an example, an image gather obtained for a real dataset. Figure 17 rep-
resents an offset ray-parameter gather at a particular horizontal location. According to the
theory, in the absence of weighting, the amplitude at pgiheeds to be decreased, while the
amplitude at lowp,, needs to be increased.

The left panel shows the gather computed without the Jacobian weighting factor, while the
right panel shows the gather after amplitude compensation. As expected, the Jacobian weight-
ing attenuates most of the energy at hjgh and enhances the amplitude of the reflections at
lower py,.

CONCLUSIONS

This paper demonstrates that angle-domain common image gathers generated by wave-equation
migration can be used for AVA analysis if proper care is taken to ensure that amplitudes are
not distorted during processing. Angle gathers can be computed both in the image space (with
output in true reflection angle) or in the data space (with output in offset ray-parameter). The
image-space method is independent of the structural dip. The two most important factors that
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Figure 17: Real data example. The bottom panels are offset ray-parameter gathers computed
with compensated (left) and uncompensated (right) amplitudes. The top panels show the am-
plitude variation with offset ray parameter for an event at about 1.75 km depth. The amplitude
decrease at small incidence angles is caused by the absence of innermost offsets from the

recorded datapaul2-kjal0.5[NR]
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influence the accuracy of the amplitude response are the sampling of the offset axis and the
incorrect treatment of amplitudes during migration. While the limited sampling cannot be
corrected, the migration operator can be modified to incorporate the appropriate correction
factors. We have analyzed the Jacobian compensation factors, and show that they can success-
fully be applied to real data. We have shown how to construct “true amplitude” wave-equation
migration operators, as well as pseudo-unitary modeling and migration operators.
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APPENDIX A

This appendix presents a derivation of the expression for the weighting Jacobian in the case of
variable velocity.

The dispersion relation

o = 5/ (@05 — kP (A1)

can be approximated using a Taylor series expansion around the constant reference slowness
(s0):

dk.
ky & kyg+ — (s—0). (A-2)

S=S0

We then take the derivative & with respect to the frequeney
e, 2 [der] sy

do do do
and if we note that
dkyy @’
ds Kzo

we obtain

dk; dkzo+ d [w’s
do do  do| kg

](s—sO). (A-3)

We continue by evaluating the derivatives with respeeb ton the right hand side. With

little algebra, we obtain
d [wz%} _osf, [@]z
dCl) kzo - kZO kZO .

dk, wsy 0y |: 0y ] 2
2= g+ 02— s— A-4
e kw( 21 ) s (A-4)

therefore

The prestack weighting Jacobian is:

2 2 -1
@S @ w0y wSo wSo wSo
w So+i— 2—[ } S—S)+—S+— 2—[ ] S — S
" [kzso ks ( kzo )‘ A ( o) )&

(A-5)
which, in constant slowness, takes the simple form
-1
Sy S
Wy, = [ %+~——%] : (A-6)
kzso kzro



