Next: Representation of the slowness
Up: DISCUSSION
Previous: DISCUSSION
If we assume that the slowness model has a constant value m0 in the region
around source position (xs,zs), we can use the following initial
conditions for the local paraxial ray method. The traveltimes are
![\begin{displaymath}
\tau(x,z)=s_0\sqrt{(x-x_s)^2+(z-z_s)^2}.\end{displaymath}](img14.gif)
The ray directions are specified by the angles of rays
to the vertical, as follows:
![\begin{displaymath}
\theta(x,z)=\arctan{x-x_s \over z-z_s}.\end{displaymath}](img15.gif)
We can also find that
![\begin{displaymath}
M(x,z)={m_0 \over \sqrt{(x-x_s)^2+(z-z_s)^2}}\end{displaymath}](img16.gif)
and
![\begin{displaymath}
J(x,z)={1 \over \sqrt{(x-x_s)^2+(z-z_s)^2}}.\end{displaymath}](img17.gif)
If the slowness varies in this region, the paraxial ray method should be used
to find the initial conditions.
Next: Representation of the slowness
Up: DISCUSSION
Previous: DISCUSSION
Stanford Exploration Project
12/18/1997