Next: About this document ...
Up: Berryman: Resolution for Lanczos
Previous: ACKNOWLEDGMENTS
-
Backus, G., and Gilbert, F., 1968, The resolving power of gross earth data:
Geophys.J. R. Astron.Soc., 16, 169-205.
-
Berryman, J. G., 1991, Lecture Notes on Nonlinear Inversion and
Tomography: I.Borehole Seismic Tomography, LLNL UCRL-LR-105358,
October, 1991.
-
Golub, G. H., and Van Loan, C. F., 1983, Matrix Computations, Johns
Hopkins University Press, Baltimore, Maryland, Chapters 9 and 10,
pp.322-379.
-
Jackson, D. D., 1972, Interpretation of inaccurate, insufficient and
inconsistent data: Geophys.J. R. Astron.Soc., 28, 97-109.
-
Lanczos, C., 1950, An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators: J. Res. Nat.Bur.Stand., 45, 255-282.
-
Moore, E. H., 1920, Bull.Amer.Math.Soc., 26, 394-395.
-
Nolet, G., 1985, Solving or resolving inadequate and noisy tomographic
systems: J. Comp.Phys., 61, 463-482.
-
Paige, C. C., and Saunders, M. A., 1982, LSQR: An algorithm for sparse
linear equations and sparse least squares: ACM Trans.Math.Software,
8, 43-71.
-
Penrose, R., 1955a, A generalized inverse for matrices: Proc.Cambridge
Philos.Soc., 51, 406-413.
-
Penrose, R., 1955b, On best approximation solutions of linear matrix equations:
Proc.Cambridge Philos.Soc., 52, 17-19.
-
Rao, C. R., 1965, Linear Statistical Inference and Its Applications,
Wiley, New York, pp.24-26.
-
van der Sluis, A., and van der Vorst, H. A., 1987, Numerical solution of large,
sparse linear algebraic systems arising from tomographic problems: in
Seismic Tomography - With Applications in Global Seismology and
Exploration Geophysics, G. Nolet (ed.), Reidel, Dordrecht, Holland, Chapter
3, pp.49-83.
-
Wiggins, R. A., 1972, The general linear inverse problem: Implications of
surface waves and free oscillations for Earth structure: Rev. Geophys.Space Phys., 10, 251-285.
Next: About this document ...
Up: Berryman: Resolution for Lanczos
Previous: ACKNOWLEDGMENTS
Stanford Exploration Project
11/17/1997