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3-D prestack migration of common-azimuth data

Biondo Biondi and Gopal Palacharla1

ABSTRACT

In principle, downward continuation of 3-D prestack data should be carried out in a 5-D
computational space, even when the dataset to be migrated is only 3-D or 4-D. Unless this
efficiency issue is solved, 3-D prestack migration methods based on the solution of the
one-way wave equation are uncompetitive with Kirchhoff methods. We present a method
for downward continuing common-azimuth data in the frequency-wavenumber domain
in the original 4-D space of the common-azimuth data geometry. The method is based
on a stationary-phase approximation of the one-way wave equation and can be applied
to both phase-shift and Stolt migrations. The proposed migration methods are exact for
constant velocity, and approximate for velocity varying with depth. However, results of
some numerical experiments on synthetic data show that the approximation is good even
in presence of strong vertical velocity gradients.

INTRODUCTION

As computational power of scientific computers keeps growing, 3-D prestack migration is
becoming within the reach of the seismic industry. For 3-D prestack migration Kirchhoff
methods are often preferred over methods based on the recursive downward continuation of
the recorded wavefield because of their flexibility in handling 3-D prestack data geometries
(Audebert, 1994). Kirchhoff methods can be employed to efficiently migrate datasets with
uneven spatial sampling and datasets that are subsets of the complete prestack data, such as
common-offset cubes and common-azimuth cubes. For recursive methods the irregular sam-
pling problem can be addressed with an interpolation preprocessing step, though in practice
it can be a challenging task. However, in principle the downward continuation of prestack
subsets should be carried out in the full 5-D data space, even when the original subset is 3-D
(common offset) or 4-D (common azimuth). As a result of these constraints most of the com-
putations are wasted on propagating components of the wavefield that are either equal to zero
or do not contribute to the final image. These potential limitations of recursive methods have
led the industry to pursue almost exclusively Kirchhoff methods for 3-D prestack migration
(Western and Ball, 1991; Ratcliff et al., 1994), though recursive methods have some intrinsic
advantages over Kirchhoff methods. First, they are potentially more accurate and robust be-
cause they are based on the full wave-equation and not an asymptotic solution based on ray
theory. Second, when they can be used to extrapolate the recorded data without increasing
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their dimensionality (e.g. zero-offset data), they can be implemented more efficiently than the
corresponding Kirchhoff methods.

In this paper we develop a method for efficiently imaging common-azimuth data by down-
ward continuing the data in the original 4-D space. An efficient algorithm for migrating
common-azimuth subsets has useful practical applications because common-azimuth data are
either the result of a collection of actual physical experiments (e.g. single-streamer marine sur-
vey with negligible cable feather) or they may be synthesized by preprocessing (Biondi and
Chemingui, 1994). Our method is potentially very efficient for migrating common-azimuth
data but it is exact (within the limitations of a stationary phase approximation (Bleistein, 1984),
as we will discuss in the following section) only for the simple case of constant propagation
velocity. For the case of velocity varying with depth we propose a simple and efficient approx-
imation and we explore the range of validity of our approximation by analyzing the results of
some simple numerical experiments. But more studies are required to determine its accuracy
in the more complex, and interesting, case of velocity being a general function of the spatial
coordinates.

An important application of our method that is unaffected by the constant velocity as-
sumption is the efficient computation of migration velocity scans from common-azimuth data
by a Stolt migration (Stolt, 1978). A 3-D time-migrated image can be extracted from these
multiple-velocity migrations with a similar procedure to the one that is routinely applied to 2-
D data. Furthermore, these migration velocity scans can also be effective tools for estimating
the velocity function (Shurtleff, 1984; Fowler, 1988).

COMMON-AZIMUTH PHASE-SHIFT MIGRATION

3-D prestack data can be downward continued in the frequency-wavenumber domain by apply-
ing the 3-D double square root equation (DSQR). In 3-D the DSQR equation is function of five
scalar variables: the temporal frequency (ω), the two components of the midpoint wavenum-
ber vector (km = kmxxm + kmyym), and the two components of the offset wavenumber vector
(kh = khxxh +khyyh). Therefore, in the general case the dimensionality of the computational
domain is five. However, the data is not always 5-D but it is often 3-D or 4-D. When the
dimensionality of the data is lower than five it would be more efficient to use an algorithm that
downward continues the data in less than 5 dimensions, if such an algorithm were available.
Common-azimuth data has only four dimensions because the offset vectors between source
and receivers are constrained to have the same azimuth. The four axis are: recording time, two
midpoints, and the offset along the azimuthal direction. A phase-shift migration of common-
azimuth data in a 4-D computational space can be derived by evaluating the stationary-phase
approximation of the full 3-D DSQR equation (Appendix A). The resulting expression is

M̂(km,zr ) =∫
+∞

−∞

dkhx

∫
+∞

−∞

dω D0(ω,km,khx)A(ω,km,khx,zr )ei 8stat(ω,km,khx,zr )+i π
4 . (1)

Wherex is the azimuth direction,y is the direction perpendicular tox (in the following we will
call y the cross-azimuth axis),D0 and M̂ are respectively the data and the migration results.
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The functionA is real and thus it is a simple amplitude factor (given also in Appendix A), and
8stat is the phase function evaluated along the stationary path and it is equal to

8stat(ω,km,khx,zr ) =

∫ 0

zr

dz
′

DSQR[ω,km,khx,k
′

hy(zr ),z
′

)]; (2)

whereDSQR(ω,km,kh,z
′

) is the double square root equation

DSQR(ω,km,kh,z
′

) =

ω

v(z′)


√

1−
v2(z′)

4ω2
[(kmx+khx)2

+
(
kmy+khy

)2
] +

√
1−

v2(z′)

4ω2
[(kmx−khx)2

+
(
kmy−khy

)2
]

 (3)

andk
′

hy(zr ) is the global stationary path for the phase function.

When the velocity is constant (v(z
′

) = V) the global stationary path is independent of the
reflector depthzr and it can be derived analytically as equal to

k
′

hy = kmy

√
ω2 −

V2

4 (kmx+khx)2
−

√
ω2 −

V2

4 (kmx−khx)2√
ω2 −

V2

4 (kmx+khx)2
+

√
ω2 −

V2

4 (kmx−khx)2
. (4)

However, when the velocity varies with depth the stationary path cannot be easily derived
analytically. To overcome this problem we suggest to approximate the global stationary path
k

′

hy(zr ) with the stationary path evaluated locally at each depth levelz
′

of the recursive down-
ward continuation, that is;

k
′

hy(zr ) ≈ k̂
′

hy(z
′

) = kmy

√
ω2 −

v2(z′ )
4 (kmx+khx)2

−

√
ω2 −

v2(z′ )
4 (kmx−khx)2√

ω2 −
v2(z′ )

4 (kmx+khx)2
+

√
ω2 −

v2(z′ )
4 (kmx−khx)2

. (5)

These local stationary paths are dependent on velocity at each depth levelv(z
′

), but they are
independent of the reflector depthzr . Therefore the integral of equation (2) can be evaluated
recursively over depth levels, leading to an efficient migration algorithm. In the following
sections we will investigate the validity of this approximation by comparing migration results
obtained using the full DSQR equation and results obtained using our approximation in a
medium with velocity varying with depth.

In principle the proposed method could be generalized to handle lateral velocity variations
by using the Phase Shift Plus Interpolation (Gazdag and Sguazzero, 1984) methodology. How-
ever, we think that a better understanding of the implications of the approximation introduced
in equation (5) is required before we apply the method to more general cases.
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COMMON-AZIMUTH STOLT MIGRATION

In the previous section we have introduced an efficient phase-shift migration algorithm for
common-azimuth datasets. Because for constant velocity Stolt migration algorithms are more
efficient than phase-shift ones, we will now derive an algorithm for common-azimuth Stolt
migration. Probably the most promising application of this new 3-D Stolt migration is the
computation of constant migration velocity scans. As it is routinely done for 2-D prestack
Stolt, this multiple-velocity migrations can be used for extracting a time-migrated image and
for estimating the velocity function in a dip-independent fashion.

The fundamental result of our development is the derivation of a new Stolt change of
variables to be applied to common-azimuth data in the frequency-wavenumber domain. As
we show in Appendix B, the new change of variables can be recast in a way that shows how
in constant velocity, 3-D prestack migration can be seen as the cascade of two processes:
2-D prestack migration along the azimuth direction, and poststack migration along the cross-
azimuth direction. Canning and Gardner (1992) showed a similar result, however in their
two-pass migration the poststack migration along the cross-azimuth direction comes before
the 2-D prestack migration. The migration of a common-azimuth dataset can be expressed as

M̂(τ ,km) =∫
+∞

−∞

dkhx

∫
+∞

−∞

dkτ

[
dω

dkτ

]
D0(ω(kτ ,km,khx,V),km,khx)Ā(t ,km,khx,τ )eikτ τ+i π

4 . (6)

whereτ is pseudo-depth,̄A is an amplitude factor andω = ω(kτ ,km,khx,V) is a dispersion
relation derived by using the stationary-phase method. Notice, that to be able to evaluate the
integral overτ in equation (6) by Fast Fourier Transforms we need to drop the amplitude factor
Ā, because it depends ont . Dropping this amplitude term does not affect the usefulness of the
method because its main application is for kinematic migrations.

After lengthy algebraic manipulations the dispersion relationω(kτ ,km,khx,V) can be re-
cast as the cascade of two changes of variable: the first is the change of variable for 2-D
prestack Stolt migration, i.e.;

ω2
=

1

k2
τ0

(
k2
τ0 +

V2

4
k2

mx

)(
k2
τ0 +

V2

4
k2

hx

)
, (7)

and the second is the change of variable for zero-offset migration in the cross-azimuth direc-
tion, i.e.;

k2
τ0 = k2

τ +
V2

4
k2

my. (8)

This result has a simple intuitive explanation in terms of what is known about the kinemat-
ics of two-pass 3-D poststack migration (Jakubowicz and Levin, 1983) and 3-D DMO (Hale,
1983). The outline of the reasoning is the following: first we consider that constant velocity
3-D poststack migration can be split along two perpendicular directions (azimuth and cross-
azimuth in our case) without loss of accuracy. Second, we consider that for constant velocity
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3-D DMO is kinematically exact and reduces to 2-D DMO along the azimuthal direction.
Consequently, constant velocity prestack migration of common-azimuth data can be achieved
by cascading NMO+DMO with poststack migration along the azimuth direction followed by
poststack migration along the cross-azimuth direction. Finally we recognize that the first two
steps of this procedure are equivalent to 2-D prestack migration along the azimuthal direction.

Though the dispersion relationω(kτ ,km,khx,V) is more meaningfully described as the
cascade of the two transformations expressed in equations (7) and (8) the regridding of the
data can be accomplished in one single step. Consequently, if the additional costs of perform-
ing FFT along the cross-azimuth midpoint axis and of handling the large amount of data are
neglected, the proposed 3-D prestack Stolt migration of a set of parallel lines with a common-
azimuth is comparable to the cost of migrating the same lines with a conventional 2-D prestack
Stolt migration algorithm.

NUMERICAL RESULTS

To check the validity of the proposed migration methods and to explore their limits of ap-
plicability, we migrated a common-azimuth dataset containing a band limited impulse. As a
benchmark for judging the quality of the results obtained using the proposed common-azimuth
Stolt and phase-shift migrations, we use the results of applying phase-shift migration to a full
5-D prestack data, thus without any stationary-phase approximation.

First we will analyze the results of both the new migration methods in a medium with
constant velocity of 2.5 Km/s. The data was a band-limited impulse (5-40 Hz) delayed .5
seconds and placed at .5 Km offset along the azimuthal direction. Figure?? shows a vertical
slice along the azimuthal direction of the migration results for both the 5-D phase-shift migra-
tion (a) and the common-azimuth phase-shift migration (b). Figure?? shows the horizontal
slices taken across the migration results at constant depth of 160 m. There are very small
differences between the results; they are mostly caused by numerical artifacts that are larger
in the 5-D phase-shift results. We somewhat undersampled the cross-azimuth offset axis of
the full 5-D dataset, to accommodate limitations of our test program in handling out-of-core
jobs. Figure?? and Figure?? compare the results obtained by applying common-azimuth
Stolt migration (b) and 5-D phase shift migration (a). The differences between the results are
mainly in the numerical artifacts, though the amplitudes behavior is also slightly different.
This inaccuracy in amplitudes is probably caused by the neglect of the amplitude termĀ in
equation (6), as we discussed in the previous section.

To test the accuracy of phase-shift common-azimuth migration for varying velocity we
migrated the same dataset as in the constant velocity test, but with velocity increasing with
depth. The velocity function had a constant but strong (5s−1) vertical gradient. Figure??
compares the vertical sections along the azimuthal direction of the migrated results obtained by
the full 5-D phase-shift method (a) and the 4-D common-azimuth one (b). Figure??compares
the vertical sections along the cross-azimuth direction. Because of the strong vertical gradient
the impulse responses are not semicircle, but they bulge outwardly in the shallow part of the
section. Finally Figure?? compares the horizontal sections taken from the migrated results
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../biondo1/./Fig/Comp-ph-v0-y.pdf

Figure 1: In-line vertical sections obtained by using: a) the 5-D phase-shift migration, and b)
the common-azimuth phase-shift migration for constant velocity.

../biondo1/./Fig/Comp-ph-v0-z.pdf

Figure 2: Depth slices obtained by using: a) the 5-D phase-shift migration, and b) the
common-azimuth phase-shift migration for constant velocity.
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../biondo1/./Fig/Comp-st-v0-y.pdf

Figure 3: In-line vertical sections obtained by using: a) the 5-D phase-shift migration, and b)
the common-azimuth Stolt migration for constant velocity.

../biondo1/./Fig/Comp-st-v0-z.pdf

Figure 4: Depth slices obtained by using a) the 5-D phase-shift migration, and b) the common-
azimuth Stolt migration (b) for constant velocity.
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at a depth of 160 m. There are slight differences between the migration results obtained
using the two phase-shift methods. The most noticeable are in the amplitudes behavior as
a function of the reflector dips (Figures?? and??). The common-azimuth migration shows
higher amplitudes for the steeply dipping reflectors. There are also slight differences in the
phases of the results. These phase errors are only visible in the depth slices because they
vanish along the axis and they are maximum along the direction oriented at an angle of 45
degrees with respect to the axis. However, overall the common-azimuth migration produced a
fairly accurate result, notwithstanding the strong velocity gradient.

../biondo1/./Fig/Comp-ph-vz-y.pdf

Figure 5: In-line vertical sections obtained by using: a) the 5-D phase-shift migration, and b)
the common-azimuth phase-shift migration for velocity increasing with depth.

CONCLUSIONS

3-D common-azimuth datasets can be efficiently migrated in the frequency-wavenumber do-
main with methods based on the one-way wave equation (Stolt and phase-shift) thanks to a
stationary-phase approximation that reduces the dimensionality of the computational space
from five to the original four of the common-azimuth geometry. Within the stationary phase
assumptions, the proposed methods are exact for constant velocity. For velocity functions
varying with depth we have introduced an approximation that leads to an efficient recursive
(phase-shift) algorithm. When our approximation is used for migrating synthetic data in pres-
ence of strong vertical gradient in velocity the results are very close to the result obtained
using a full 5-D phase-shift method.
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../biondo1/./Fig/Comp-ph-vz-x.pdf

Figure 6: Cross-line vertical sections obtained by using: a) 5-D phase-shift migration, and b)
the common-azimuth phase-shift migration for velocity increasing with depth.

../biondo1/./Fig/Comp-ph-vz-z.pdf

Figure 7: Depth slices obtained by using: a) the 5-D phase-shift migration, and b) the
common-azimuth phase-shift migration for velocity increasing with depth.



10 Biondi & Palacharla SEP–80

REFERENCES

Audebert, F., 1994, 3-D prestack depth migration: Why Kirchhoff?: SEP–80, 189–207.

Biondi, B., and Chemingui, N., 1994, Transformation of 3-D prestack data by Azimuth Move-
out: SEP–80, 127–143.

Bleistein, N., 1984, Mathematical methods for wave phenomena: Academic Press.

Canning, A. J., and Gardner, G. H. F., 1992, Two pass 3-D prestack depth migration: 63rd
Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 892–894.

Fowler, P., 1988, Seismic velocity estimation using prestack time migration: Ph.D. thesis,
Stanford University.

Gazdag, J., and Sguazzero, P., 1984, Migration of seismic data by phase-shift plus interpola-
tion: Geophysics,49, no. 2, 124–131.

Hale, I. D., 1983, Dip moveout by Fourier transform: Ph.D. thesis, Stanford University.

Jakubowicz, H., and Levin, S., 1983, A simple exact method of three-dimensional migration -
theory: Geophys. Prosp.,31, no. 1, 34–56.

Ratcliff, D. W., Jacewitz, C. A., and Gray, S. H., 1994, Subsalt imaging via target-oriented
3-D prestack depth migration: The Leading Edge,13, no. 3, 163–170.

Shurtleff, R. N., 1984, An F-K procedure for prestack migration and migration velocity anal-
ysis: 46th Mtg. Eur. Assoc. Expl Geophys., Abstracts.

Stolt, R. H., 1978, Migration by Fourier transform: Geophysics,43, no. 1, 23–48.

Western, P. G., and Ball, G., 1991, 3-D Pre-stack depth migration in the Gulf of Suez: a case
history: 53rd Mtg. Eur. Assoc. Expl Geophys., Abstracts.



SEP–80 3-D common-azimuth migration 11

APPENDIX A

DERIVATION OF COMMON-AZIMUTH PHASE-SHIFT MIGRATION

In this appendix we derive the stationary-phase approximation for common-azimuth phase-
shift migration. We start by analyzing the adjoint operation; that is, the forward modeling
of common-azimuth data. This side-step is not necessary for the derivation of phase-shift
common-azimuth migration, but it makes the phase-shift case parallel to the development
of Stolt common-azimuth migration (Appendix B) and thus we think that both derivations
become clearer. The prestack data in the wavenumber domain can be obtained by summing
the contributions of the reflectors at each depth level appropriately delayed (phase shifted in
the wavenumber domain) according to the double-square root equation. In mathematical terms
the prestack data in the temporal frequency (ω), the midpoint wavenumbers (km = kmxxm +

kmyym), and the offset wavenumbers (kh = khxxh +khyyh) are given by the following integral

D(ω,km,kh) =

∫
+∞

0
dzr M(km,zr )ei 8(ω,km,kh,zr ) (B-1)

where the phase function is given by

8(ω,km,kh,zr ) =

∫ 0

zr

dz
′

DSQR(ω,km,kh,z
′

), (B-2)

and the double-square root equation is equal to

DSQR(ω,km,kh,z
′

) =

ω

v(z′)


√

1−
v2(z′)

4ω2
[(kmx+khx)2

+
(
kmy+khy

)2
] +

√
1−

v2(z′)

4ω2
[(kmx−khx)2

+
(
kmy−khy

)2
]

 (B-3)

The common-azimuth data corresponding to the azimuth oriented along the in-line directionx
can be extracted from the full prestack dataset by integrating the data over all thekhy wavenum-
bers. The expression for computing a common azimuth dataset is



12 Biondi & Palacharla SEP–80

D0(ω,km,khx) =∫
+∞

−∞

dkhy D(ω,km,kh) =∫
+∞

−∞

dkhy

∫
+∞

0
dzr M(km,zr )ei 8(ω,km,kh,zr )

=∫
+∞

0
dzr M(km,zr )

∫
+∞

−∞

dkhy ei 8(ω,km,kh,zr )
=∫

+∞

0
dzr M(km,zr )I (ω,km,khx,zr ) (B-4)

In the stationary-phase regime, the second integral (I (ω,km,khx,zr )) can be asymptotically
approximated by

I (ω,km,khx,zr ) ≈

2π√
8

′′

stat(ω,km,khx,zr )
ei 8stat(ω,km,khx,zr )+i π

4 =

A(ω,km,khx,zr ) ei 8stat(ω,km,khx,zr )+i π
4 (B-5)

where the phase function8stat is equal to the original phase function [equation (B-2)] eval-
uated along the stationary pathk

′

hy. In constant velocity the stationary path can be derived
analytically. Unfortunately, when velocity varies with depth, the stationary path of the integral
in equation (B-2) cannot be easily derived analytically and we will introduce an approximation
for 8stat.

Constant velocity

For constant velocity the integral in the expression for the phase function is easily evaluated
and the phase function simplifies to

80(ω,km,kh,V ,zr ) =∫ 0

zr

dz
′

DSQR0(ω,km,khx,khy,V) =

−DSQR0(ω,km,khx,khy,V)zr (B-6)

Consequently, in constant velocity the stationary path for the phase function is equal to the
stationary path for the double-square root equation and it can be evaluated analytically. There
are two solutions for the stationary path of the double-square root equation, and they are

k
′

hy = kmy

√
ω2 −

V2

4 (kmx+khx)2
∓

√
ω2 −

V2

4 (kmx−khx)2√
ω2 −

V2

4 (kmx+khx)2
±

√
ω2 −

V2

4 (kmx−khx)2
(B-7)
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In choosing between these two solutions, first we notice that one solution is the inverse of the
other. Second we consider the limiting case of the in-line offset wavenumber (khx) equal to
zero. In this case one solution diverges while the other (being the one with the minus sign at
the numerator) is equal to zero. We accept this second solution because it is consistent with
the notion that when bothkhx andkhy vanish the double square root equation reduces to the
single square root equation that is commonly used for migrating zero-offset data.

Velocity function of depth

When velocity varies with depth the integral in the expression for the phase function [equa-
tion (B-2)] cannot be evaluated analytically. Consequently the “global” stationary path cannot
be derived analytically, and its numerical computation is expensive. However, from the con-
stant velocity case, we can analytically derive the “local” stationary paths at each depth level,

k̂
′

hy(z
′

) = kmy

√
ω2 −

v2(z′ )
4 (kmx+khx)2

−

√
ω2 −

v2(z′ )
4 (kmx−khx)2√

ω2 −
v2(z′ )

4 (kmx+khx)2
+

√
ω2 −

v2(z′ )
4 (kmx−khx)2

. (B-8)

An efficient approximation of the phase function evaluated along the global stationary path is
the integral along the depth axis of the phase functions evaluated along the local stationary
paths. The global stationary function can thus be approximated by the following expression

8stat(ω,km,khx,zr ) ≈

∫ 0

zr

dz
′

DSQR[ω,km,khx, k̂
′

hy(z
′

),z
′

)]. (B-9)

3D Migration of constant-azimuth prestack data

From the previous results on common-azimuth modeling we can directly derive an expression
for migrating 3D common-azimuth prestack data. In the general case of multi-azimuth data,
the reflectivity function is estimated by

M̂(km,zr ) =∫
+∞

−∞

dkhy

∫
+∞

−∞

dkhx

∫
+∞

−∞

dω D(ω,km,kh)e−i 8(ω,km,kh,zr ) (B-10)

Similarly, the migration of a common-azimuth dataset can be expressed as

M̂(km,zr ) =

∫
+∞

−∞

dkhx

∫
+∞

−∞

dω D0(ω,km,khx)I
∗(ω,km,khx,zr ) (B-11)

Substituting equation (A-5) into equation (B-11) gives equation (1) of the main text.

As for modeling, this expression for migration is exact (within the approximation of sta-
tionary phase) for constant velocity, but it is approximated for velocity varying with depth.
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APPENDIX B

DERIVATION OF COMMON-AZIMUTH STOLT MIGRATION

In this appendix we derive the stationary-phase approximation for Stolt common-azimuth
migration. As for the phase-shift case, we start from the stationary-phase approximation
of Stolt modeling. The 3-D prestack data in time (t), the midpoint wavenumber (km =

kmxxm + kmyym), and the offset wavenumber (kh = khxxh + khyyh) can be computed by Stolt
modeling using the following integral over the pseudo-depthτ ,

D(t ,km,kh) =

∫
+∞

−∞

dkτ M(kτ ,km)ei 9(t ,kτ ,km,kh,V), (B-1)

where the phase function is given by

9(t ,kτ ,km,kh,V) = I DSQR(kτ ,km,kh,V) t , (B-2)

and the inverse of the double-square-root equation is equal to

I DSQR(kτ ,km,kh,V) =√
k2
τ +

V2

4

{
k2

mx+k2
hx +k2

my+k2
hy

}
+

V4

16k2
τ

(
kmxkhx +kmykhy

)2
. (B-3)

The common-azimuth data corresponding to the azimuth oriented along the in-line directionx
can be extracted from the full prestack dataset by integrating the data over all thekhy wavenum-
bers. The expression for computing a common azimuth dataset is

D0(t ,km,khx) =∫
+∞

−∞

dkhy D(t ,km,kh) =∫
+∞

−∞

dkhy

∫
+∞

−∞

dkτ M(kτ ,km)ei 9(t ,kτ ,km,kh,V)
=∫

+∞

−∞

dkτ M(kτ ,km)
∫

+∞

−∞

dkhy ei 9(t ,kτ ,km,kh,V)
=∫

+∞

−∞

dkτ M(kτ ,km)I1(kτ ,km,khx,V). (B-4)

In the stationary-phase regime, the second integral (I1(kτ ,km,khx,V)) can be asymptotically
approximated by

I1(kτ ,km,khx,V) ≈

2π√
9

′′

stat(kτ ,km,khx,V)
ei 9stat(t ,kτ ,km,khx,V)+i π

4 =

Ā(t ,km,khx,τ )ei 9stat(t ,kτ ,km,khx,V)+i π
4 =

ei 9stat(t ,kτ ,km,khx,V)+i π
4 , (B-5)
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where we dropped the amplitude factorĀ because it is function of timet , and where the phase
function evaluated along the the stationary path9stat is of the form

9stat(t ,kτ ,km,khx,V) = ω(kτ ,km,khx,V) t . (B-6)

The new dispersion relationω(kτ ,km,khx,V) can be derived by finding the stationary path of
equation (B-3) with respect tokhy. The expression for this stationary path is

khy =
−

V2

4 kmxkhxkmy

k2
τ +

V2

4 k2
my

. (B-7)

Substituting equation (B-7) into equation (B-3) and after a lot of algebra the dispersion relation
ω(kτ ,km,khx,V) can be expressed as the cascade of the two changes of variables: the first
corresponds to 2-D prestack migration along the azimuthal direction

ω2
=

1

k2
τ0

(
k2
τ0 +

V2

4
k2

mx

)(
k2
τ0 +

V2

4
k2

hx

)
(B-8)

and the second corresponds to 2-D poststack migration along the cross-azimuth direction

k2
τ0 = k2

τ +
V2

4
k2

my. (B-9)

3D Stolt migration of constant-azimuth prestack data

From the previous results on common-azimuth modeling we can derive an expression for Stolt
common-azimuth migration. The reflectivity function can be estimated by

M̂(τ ,km) =∫
+∞

−∞

dkhx

∫
+∞

−∞

dω D0(ω,km,khx)e
ikτ (ω,km,khx,V) τ+i π

4 . (B-10)

The expression for Stolt migration is obtained by transforming the integral overω into an
inverse FFT by applying the change of variable

ω = ω(kτ ,km,khx,V), (B-11)

and it is given by [equation (6) in the main text]

M̂(τ ,km) =∫
+∞

−∞

dkhx

∫
+∞

−∞

dkτ

[
dω

dkτ

]
D0(ω(kτ ,km,khx,V),km,khx)e

ikτ τ+i π
4 . (B-12)


