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Transformation of 3-D prestack data by Azimuth Moveout

Biondo Biondi and Nizar Chemingui1

ABSTRACT

We introduce a new partial-migration operator, named Azimuth Moveout (AMO), that ro-
tates the azimuth and modifies the offset of 3-D prestack data. AMO can be effectively
applied to improve the accuracy and to reduce the computational cost of 3-D prestack
imaging. For example, a 3-D prestack dataset can be drastically reduced in size by coher-
ent partial-stacking after AMO. The reduced dataset can be then imaged by prestack depth
migration, a process that would have been too expensive to apply to the original dataset.
AMO can also be effectively used for regularizing data geometries (e.g. correct for cable
feather) and for interpolating unevenly sampled data.
AMO is defined as the cascade of DMO and inverse DMO at different offsets and az-
imuths. We derive the time-space domain formulation of the AMO operator by first de-
riving its Fourier domain representation, and then analytically evaluating the stationary-
phase approximation. The impulse response of AMO is a surface in the time-midpoint
space; the shape of the surface is a skewed saddle, and its spatial extent is determined by
the amount of azimuth rotation and offset continuation to be applied to the data. When the
azimuth rotation is small (≤ 20◦), the AMO operator is compact and inexpensive to apply
in the time-space domain. We successfully tested AMO by coherently stacking traces with
similar offsets and azimuths from a synthetic land survey.

INTRODUCTION

Modern 3-D surveys, both land and marine, have a wide range of offsets and azimuths. Of-
ten the offset and azimuth distribution are sub-optimal because acquisition geometry is the
result of a compromise between the maximization of data quality and practical and economic
constraints. To optimize the imaging of 3-D datasets, it can be useful to modify the effective
azimuth and offset distribution of the data during processing, without the need of a detailed a
priori assumptions on the underlying velocity function or geology. In this paper we show that
this task can be accomplished by applying a partial migration operator that rotates the data
azimuth and changes the data absolute offset. Because of its ability to modify the azimuth of
the data we have named this operator Azimuth Moveout (AMO).

There are many potential applications for the AMO operator. One of the most promising,
and the one that we will illustrate with a synthetic example, is the ability to reduce the amount
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of 3-D prestack data without loss of information by coherently stacking traces that have sim-
ilar azimuths and offsets. Because the kinematics of 3-D data are dependent on azimuth and
offsets, the data needs to be processed with AMO prior to stacking for maximizing coherency
among the traces that are averaged. After this data reduction, the application of computation-
ally intensive processes such as 3-D prestack migration becomes more affordable. Another
important family of applications is the regularization of data geometries; e.g. the correction
for cable feather in marine surveys. After this correction the data can be processed with more
efficient algorithms, either because the survey is closer to fulfill 2-D assumptions, or because
efficient methods are available for imaging single-azimuth data (Biondi and Palacharla, 1994).
Finally, we believe that AMO can be effectively employed for “wave-equation” interpolation
of 3-D data (Ronen, 1987) in order to overcome spatial aliasing problems or, more simply, to
correct for uneven coverage (Beasley and Klotz, 1992).

The AMO operator can be defined as the cascade of an imaging operator that acts on data
with a given offset and azimuth, followed by a forward modeling operator that reconstructs
the data at a different offset and azimuth. Any 3-D prestack imaging operator can be used for
defining AMO. However, the characteristics of the resulting AMO operator, such as accuracy,
cost and degree of required a-priori knowledge of the velocity function, will depend on the
choice of the 3-D prestack operator used for its definition. For example, if 3-D prestack depth
migration were used to define AMO, the resulting AMO operator would be very accurate. But,
on the other hand, it would require a detailed knowledge of the velocity function, and it would
be very difficult to derive its analytical representation leading to a potentially expensive im-
plementation. Because of these considerations we have chosen to define AMO from constant-
velocity dip moveout (Deregowski and Rocca, 1981; Hale, 1984). We selected DMO for two
main reasons. First, DMO is velocity independent, within the well understood limitations of a
constant velocity assumption, since it is applied to the data after NMO, which removes the first
order effects of velocity variations. Second DMO can be formulated as acting on data with
constant offset and azimuth, and thus it naturally lends itself to a straightforward derivation
of AMO. Because we derived AMO from DMO, AMO has potentially similar strengths and
weaknesses as DMO has. However, we speculate that AMO can be effectively applied when
velocity variations are too strong for DMO to successfully continue the data all the way to zero
offset. The rationale of this claim, that must be substantiated by further analysis and results, is
that the AMO transformation is correct to the first order. Therefore, if AMO is applied when
the azimuth rotation and offset continuation are small it should be fairly accurate. However, a
generalization of AMO to variable velocity DMO (Perkins and French, 1990; Meinardus and
Schleicher, 1993; Hale and Artley, 1993; Popovici, 1994) is likely to be more accurate than
the AMO operator presented in this paper.

For some applications, such as the synthesis of 2-D lines from 3-D data, AMO is related to
the two-pass 3-D migration proposed by Canning and Gardner (1992), which is based on the
successive application of DMO and inverse DMO. However, AMO can be applied to a wider
set of problems and datasets because the geometry of the output data is arbitrary. In addition
to data regularization, AMO can be applied to data reduction and interpolation. Furthermore,
the application of AMO as a single-step procedure can achieve substantial computational sav-
ings by exploiting the reduced size of the AMO operator when azimuth rotation and offset
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continuation are small.

In the next section we will derive the AMO operator starting from the Fourier domain
formulation of DMO (Hale, 1984) and inverse DMO (Ronen, 1987). However, because AMO
is intented to be applied to unevenly sampled data a Fourier domain formulation is of little
practical interest. Therefore, we derived a time-space formulation of the AMO operator by
applying the stationary-phase method to its Fourier expression. The impulse response of the
time-space AMO is a skewed saddle surface. The spatial extent of the operator increases with
the amount of azimuth rotation and offset continuation that are applied to the data. When the
azimuth rotation and offset continuation are small the AMO operator is very compact, and
thus is relatively inexpensive to apply as an integral operator.

AZIMUTH MOVEOUT OPERATOR

We define AMO as an operator that transforms 3-D prestack data with a given offset and
azimuth to equivalent data with a different offsets and azimuths. Figure?? shows a graphical
representation of this offset transformation; the input data with offseth1 = h1(cosθ1,sinθ1) is
transformed into data with offseth2 = h2(cosθ2,sinθ2). AMO is not a single-trace to single-
trace transformation, but moves events across midpoints according to their dip. Therefore,
AMO is a partial-migration operator, and, since 3-D prestack data is often irregularly sampled,
it is most conveniently applied as an integral operator in the time-space domain. For this
purpose, in this section we derive a time-space representation of the AMO operator. We first
derive the AMO operator starting from the classical definition of DMO in the frequency-
wavenumber domain (Hale, 1984) and the definition of its inverse (Ronen, 1987). We then
evaluate the stationary-phase approximation of the AMO operator expressed in the frequency-
wavenumber domain. The stationary-phase approximation yields a time-space representation
of the AMO operator that can be applied as an integral operator. Although, integral AMO
can be applied to irregularly sampled data, an accurate implementation of AMO must avoid
aliasing of the data and of the operator.

The DM O operator and its inverse,DM O−1, can be defined in the zero-offset frequency
ω0 and midpoint wavenumberk as

DM O =

∫
dt1J1e

−i ωot1

√
1+

(
k·h1
ωot1

)2

(1)

DM O−1
=

∫
dωoJ2e

+i ωot2

√
1+

(
k·h2
ωot2

)2

. (2)

The traveltimest1 andt2 are respectively the traveltime of the input data after NMO, and the
traveltime of the results before applying inverse NMO. The Jacobians in expressions (1) and (2)
can be either the ones proposed in the original Hale’s formulation or the improved ones pro-
posed by Zhang (1988). TheAM O operator is given by the cascades ofDM O andDM O−1

and can be written as

AM O =

∫
dt1

∫
dωoJ1J2e

−i ωo

(
t1

√
1+

(
k·h1
ωot1

)2
−t2

√
1+

(
k·h2
ωot2

)2
)
. (3)
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Figure 1: Map view of offset and azimuth of AMO input and output traces.biondo2-sketch
[NR]

The derivation of the stationary-phase approximation of the AMO operator is fairly lengthy
and complex. We present the outline of this derivation in Appendix A. The equation for the
kinematics of the impulse response is,

t2(X,h1,h2,t1) = t1
h2

h1

√
h2

1sin2(θ1 − θ2)− X2sin2(θ2 −ϕ)

h2
2sin2(θ1 − θ2)− X2sin2(θ1 −ϕ)

(4)

while the amplitudes, when Zhang’s Jacobian is used, are given by

A(X,h1,h2,t1) =
ωot1
h1

(
1+

X2sin2(θ2−ϕ)
h2

1sin2(θ1−θ2)

)(
1+

X2sin2(θ1−ϕ)
h2

2sin2(θ1−θ2)

)
√

h2
2sin2(θ1 − θ2)−sin2(θ2 −ϕ)

(5)

whereX = X(cosϕ,sinϕ) is the output location vector in midpoint coordinates. Notice that the
zero-offset frequencyωo enters as multiplicative factor in the expression for AMO amplitudes,
but the data is never available as zero-offset data during the AMO process. The effect of this
multiplicative factor can be approximated by a time-domain filter applied either to the input
or to the output data. For given input half-offset and time (h1, t1) and output half-offset (h2),
equations (4) and (5) define a surface in the time-midpoint space. The surface is a skewed
saddle; its shape and spatial extent are controlled by the values of the absolute offsets and by
the azimuth rotation, i.e.; the differences in azimuths between the input and the output data.
Consistent with intuition, the spatial extent of the operator has a maximum for rotation of 90
degrees and vanishes when offsets and azimuth rotation tend to zero. Furthermore, it can be
easily verified thatt2 = t1 for the zero-dip components of the data; that is, the kinematics of
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zero-dip data after NMO do not depend on azimuth and offset. Figure?? shows the AMO
impulse response forh2 = h1 =1 km and azimuth rotation of 30 degrees. The amplitudes of
the operator are gray-coded on the surface. The darker the surface, the higher the amplitudes.
The rendering of the surface was cutoff for amplitudes lower than 10% of the maximum.
Figure?? shows the AMO impulse response for the same values of the absolute offsets as
for Figure ??, but azimuth rotation of only 10 degrees. As expected, for smaller azimuth
rotations the AMO operator becomes much narrower, and the skew of the saddle decreases.
Notice that the expression for the AMO surface is not valid when eitherh1 or h2 are set to

zero, or when the azimuth rotation is set to zero. This is not surprising, because in these cases
the operator changes from being a surface to be a line. This change in the dimensionality
of the operator causes the stationary-phase solution to become singular. However, a different
stationary-phase approximation can be derived for these special cases, and the expression of
the traveltime curve is then given by the following solutions of a quadric equation

t2(X,h1,h2,t1) =

t1
√

2h1√
(h2

1+h2
2)−X2+

√
[(h1−h2)2−X2][(h1+h2)2−X2]

h2 ≤ h1

t1

√
(h2

1+h2
2)−X2+

√
[(h1−h2)2−X2][(h1+h2)2−X2]

√
2h2

h2 ≥ h1. (6)

The width of the operator defined in equation (6) is equal to the difference between the input
and output offsets. As expected, the expression reduces to the known expression for integral
DMO when the output half-offseth2 is set to zero and to inverse DMO when input half-offset
h1 is set to zero. Incidentally, equation (6) defines an operator for offset-continuation of 2-D
prestack data, and it can have useful applications by its own.

COHERENT PARTIAL STACKING OF A SYNTHETIC 3-D LAND DATASET

AMO can be applied to reduce the data size of a 3-D prestack dataset by coherently stacking
traces with similar absolute offsets and azimuths. For example, a land dataset with a wide
range of azimuths and offsets can be reduced to a small set of data-cubes with constant offset
and azimuth. Then, each of these common-offset cubes can be migrated independently with
a 3-D prestack depth migration. The migrated cubes can be stacked together to form the
final image, or analyzed to refine the velocity model. To test the application of AMO to this
data reduction procedure, we have created a synthetic dataset “recorded” with an idealized
land acquisition geometry. The geophones were distributed on a set of parallel lines, and the
shots were positioned along lines perpendicular to the geophone lines. The shot and geophone
axes were uniformly sampled for achieving equal offset and azimuth distribution for all the
midpoints in the central area of the survey. We opted for a regular coverage to analyze the
properties of the AMO operator and of our integral implementation in a simple case. But AMO
does not require regular geometry; it can actually be used for regularizing data geometries. We
modeled the data by a simple Kirchhoff algorithm assuming constant velocity of 2 km/s and a
single point diffractor at a depth of 200 meters. The constant velocity assumption was again
for the sake of simplicity; tests with a more complex velocity function are required. From this
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Figure 2: 3-D rendering of AMO impulse response for half-offset equal to 1 Km and azimuth
rotation equal to 30◦. biondo2-amo-win-30-5[NR]

Figure 3: 3-D rendering of AMO impulse response for half-offset equal to 1 Km and azimuth
rotation equal to 10◦. biondo2-amo-win-10-5[NR]
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Figure 4: Absolute offsets and azimuths of input-data traces processed by AMO.biondo2-OA
[CR]

dataset we synthesized a data cube with one single offset (650 m) and one single azimuth (0◦)
by applying AMO to all the traces with offset within the (600 m, 700 m) interval and azimuth
within the (−30◦,+30◦) interval. The total number of input traces processed with AMO was
about 320,000, and the output cube was made of about 16,000 traces; the reduction factor thus
was about 20. Figure??shows the absolute offset and azimuth distribution for the input traces
that were processed by AMO. Consistently with the theory, AMO was applied after NMO,
and inverse NMO was applied after AMO. To check the results of AMO processing we also
generated a reference dataset with absolute offset equal to 650 meters and azimuth equal to
zero degrees. For comparison, we also computed the result of stacking the same traces after
NMO without applying AMO. Figure?? shows time-slices taken from these three datasets at
a constant time of .96 seconds. Between the result of AMO (Figure??b) and the reference
dataset (Figure??a) there are few differences in the frequency content and amplitudes. The
AMO results also show artifacts inside the elliptical diffraction curve, but overall, AMO has
been successful in reconstructing the prestack data. In contrast, the simple uncoherent stacking
process (Figure??c) failed to reconstruct the data. The data have lost coherency and, even
where the data did stack coherently, the kinematics are wrong. The error in kinematics is
larger for the data components dipping along the zero azimuth direction and vanishes along
the 90 degree azimuth. The most likely explanation of the artifacts in the AMO results is that
our implementation of integral AMO needs a few improvements. Areas that need improvement
are the anti-aliasing operator and the transition between the 3-D AMO of equation (4) and the
2-D AMO operator of equation (6).

To gain a better insight into the properties of the AMO operator we show the same three
datasets sliced along different directions. Figure?? shows the vertical slices taken along the
in-line direction. The artifacts of the AMO results are clearly visible as well as the inaccuracies
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in amplitude along the top of the diffraction curve (Figure??b). The kinematics of the result
of uncoherent stacking (Figure??c) are wrong, except for the zero-dip component of the data.
Figure?? shows the vertical slices taken along the cross-line direction. The kinematics of all
three results are similar, though the amplitudes of uncoherent stacking (Figure??c) decrease
too rapidly with dips. Finally, Figure?? shows the vertical slices taken along the direction
at an angle of 45 degrees with respect to the axis. Uncoherent stacking (Figure??c) totally
destroyed the data, except for the the zero-dip components.

CONCLUSIONS

The effective offset and azimuth of 3-D prestack data can be modified during the process-
ing flow by applying a partial migration operator (AMO) to the prestack data. We defined
the AMO operator in the Fourier domain as the cascade of DMO and inverse DMO. The
time-space representation of the AMO operator is then derived by analytically evaluating the
stationary-phase approximation of its Fourier representation. The application of AMO in one
single step instead of two steps (DMO followed by inverse DMO) leads to substantial compu-
tational savings. The AMO operator is compact in space when the azimuth rotation and offset
continuation applied to the data are small.

By applying AMO we successfully reduced the data size by a factor of 20 for a synthetic
3-D land survey by performing a coherent partial stack of traces with similar offsets and az-
imuths. We synthesized a constant offset and azimuth cube from traces with offset varying by
up 100 meters and azimuth varying by up 60 degrees.
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Figure 5: Time-slices taken from: a) the reference dataset, b) the AMO results, and c) the
uncoherent stacking results.biondo2-Comp-t[CR]
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Figure 6: In-line slices taken from: a) the reference dataset, b) the AMO results, and c) the
uncoherent stacking results.biondo2-Comp-y[CR]
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Figure 7: Cross-line slices taken from: a) the reference dataset, b) the AMO results, and c) the
uncoherent stacking results.biondo2-Comp-x[CR]



SEP–80 AMO 13

Figure 8: Diagonal slices taken from: a) the reference dataset, b) the AMO results, and c) the
uncoherent stacking results.biondo2-Comp-diag[CR]



14 Biondi & Chemingui SEP–80

APPENDIX A

STATIONARY-PHASE EVALUATION OF AMO INTEGRAL

This appendix describes the application of the stationary phase method to approximate the 3-D
AMO kernel in the time-space domain. Our derivation has a similar flavor to the stationary-
phase approximation of the conventional DMO operator presented in (Black et al., 1993).
From equation (3) in the main text, we can write the AMO operator in the time-space domain
as

AM O =

∫ ∫
dkxdkye−i (kxx+kyy)

∫
dt1

∫
dωoJ1J2e

i ωo

(
t1

√
1+

(
K ·h1
ωot1

)2
−t2

√
1+

(
K ·h2
ωot2

)2
)
, (B-1)

whereX = xx+ yy = X(cosϕ,sinϕ) is the output location vector in midpoint coordinates; for
sake of notation simplicity we assume that the impulse response is centered at the origin of the
midpoint coordinates. We seek to find an approximate solution for thek integral. We begin
by rewriting (B-1) as

AM O =

∫
dt1

∫
dωo

∫
dkxdkyei (ωo(t1η1−t2η2)−kxx−kyy)

=

∫
dt1

∫
dωo

∫ ∫
dkxdkyei 8(ωo,t ,k,h). (B-2)

The phase of this integral is,

8 ≡ ωo(t1η1 − t2η2)−kxx −kyy, (B-3)

where,

η1 =

√
1+

(
k.h1

ωot1

)2

and η2 =

√
1+

(
k.h2

ωot2

)2

. (B-4)

Next we make the following change of variables and let,

β1 =
h1.k
ωot1

and β2 =
h2.k
ωot2

(B-5)

therefore,η1 andη2 become

η1 =

√
1+β2

1 and η2 =

√
1+β2

2. (B-6)

The derivatives ofη1 andη2 with respect to the wavenumberskx andky can be written as

∂η1

∂kx
=

h1x

wot1

β1√
1+β2

1

and
∂η2

∂kx
=

h2x

wot1

β2√
1+β2

2

∂η1

∂ky
=

h1y

wot1

β1√
1+β2

1

and
∂η2

∂ky
=

h2y

wot1

β2√
1+β2

2

. (B-7)
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Making one more change of variables, we let

ν1 =
β1√

1+β2
1

and ν2 =
β2√

1+β2
2

. (B-8)

Setting the derivative of the phase8 to zero yields the system of equations:{
h1xν1 −h2xν2 = x
h1yν1 −h2yν2 = y

(B-9)

which we solve forν1 andν2 (i.e.,η1 andη2) at the stationary pathk0. The determinant of the
system is given by

1 = h2xh1y −h1xh2y, (B-10)

and the solutions forν1 andν2 are

ν01 =
X sin(θ2 −ϕ)

h1sin(θ1 − θ2)
, (B-11)

and

ν02 =
X sin(θ1 −ϕ)

h2sin(θ1 − θ2)
. (B-12)

Now we need to evaluate the phase function8 along the stationary pathk0. By respectively
multiplying the equations in (B-9) byk0x andk0y and summing them together we obtain,

k0xx +k0yy =
ωot1β01

2√
1+β2

01

−
ωot2β02

2√
1+β2

02

. (B-13)

Substituting this relationship into the expression of the phase function [equation (B-3)] we
obtain

80 = ωo

 t1√
1+β2

01

−
t2√

1+β2
02

= ωo

(
t1
η01

−
t2
η02

)
. (B-14)

The phase function along the stationary path is thus peaked for

t2 = t1
η02

η01
= t1

√
1−ν2

01√
1−ν2

02

(B-15)

Substituting equations (B-11) and (B-12) into (B-15) we obtain (4) of the main text;

t2(X,h1,h2,t1) = t1
h2

h1

√
h2

1sin2(θ1 − θ2)− X2sin2(θ2 −ϕ)

h2
2sin2(θ1 − θ2)− X2sin2(θ1 −ϕ)

. (B-16)

Next we will derive an expression for the amplitudes of the AMO impulse response. The
stationary-phase approximation for the amplitudes of thek integral in equation (B-1) is (Bleis-
tein and Handelsman, 1975)

A(X,h1,h2,t1) ≈
2π J1J2

|det(C)|1/2ei 8+sig(C) π
4 . (B-17)
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Therefore we need to evaluate the determinant and the signature of the curvature matrixC,
defined as

C =

∣∣∣∣∣∣
∂28

∂kx
2

∂28
∂kx∂ky

∂28
∂kx∂ky

∂28

∂ky
2

∣∣∣∣∣∣ , (B-18)

whereas the signaturesig(C) is given by the number of positive eigenvalues minus the number
of negative eigenvalues. Taking the second order partial derivatives of8 with respect tokx

andky and using the definitions ofβ1 andβ2 yields the expressions for∂
28

∂kx
2 , ∂28

∂ky
2 and ∂28

∂kx∂ky
:

∂28

∂kx
2 =

h1x
2

wot1
(1+β2

1)
−3/2

−
h2x

2

ωot2
(1+β2

2)
−3/2

(B-19)

∂28

∂ky
2 =

h1y
2

wot1
(1+β2

1)
−3/2

−
h2y

2

ωot2
(1+β2

2)
−3/2

(B-20)

∂28

∂kx∂ky
=

h1xh1y

wot1
(1+β2

1)
−3/2

−
h2xh2y

ωot2
(1+β2

2)
−3/2

. (B-21)

With a little algebra one may verify that the determinant of the curvature matrix is

det(C) = −
(h2xh1y −h1xh2y)2

ω2
ot1t2

(1+β2
1)

−3/2
(1+β2

2)
−3/2

= −
12

ω2
ot1t2

(1+β2
1)

−3/2
(1+β2

2)
−3/2

. (B-22)

We notice that the determinant ofC is always negative. Given that the determinant is the
product of eigenvalues andC is a two by two matrix, thusC has two eigenvalues which have
opposite signs and therefore the signature ofC is null.
Using Zhang’s (1988) Jacobian, we compute the amplitudes along the surface defined by equa-
tion (B-16) that gives the dynamics of the impulse response [equation (5) in the main text];

A(X,h1,h2,t1) =
ω0t1
h1

(
1+

X2sin2(θ2−ϕ)
h2

1sin2(θ1−θ2)

)(
1+

X2sin2(θ1−ϕ)
h2

2sin2(θ1−θ2)

)
√

h2
2sin2(θ1 − θ2)−sin2(θ2 −ϕ)

. (B-23)

2-D AMO operator

When the input offseth1 is parallel to the output offseth2 the determinant [equation (B-10)]
of the system (B-9) is equal to zero. In this case, as we discussed in the main text, the 3-D
AMO operator degenerates into a 2-D operator. The fact that the determinant of the system of
equations is equal to zero means that the two equations are linearly dependent, and that we are
left with only one equation. However, because the operator is two-dimensional, the number of
components of the unknownk0 also goes from two to one. Consequently, another stationary
phase approximation to the AMO operator can be found. The new equation is a quartic, and
unfortunately, we have not been able to solve this new equation analytically yet. However, we
have found the solution for the kinematics of the operator with the help of Mathematica; the
resulting expression for the 2-D AMO operator is presented in equation (6) of the main text.


