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Maximum energy traveltimes calculated in the seismic frequency
band

Dave Nichols1

ABSTRACT

Prestack Kirchhoff migration using first arrival traveltimes has been shown to fail in areas
of complex structure. I propose a new method for calculating traveltimes that estimates
the traveltime of the maximum energy arrival, rather than the first arrival. The method
estimates a traveltime that is valid in the seismic frequency band, not the usual high fre-
quency approximation. Instead of solving the eikonal equation for the traveltime, I solve
the Helmholtz equation to estimate the wavefield for a few frequencies. I then perform a
parametric fit to the wavefield to estimate a traveltime, amplitude, and phase. The images
created by using these parameters are shown to be superior to those created by using first
arrival traveltimes, or those created using maximum amplitude traveltimes calculated by
paraxial ray tracing.

INTRODUCTION

Several authors have noted problems when first-arriving traveltimes are used in prestack Kirch-
hoff migration. The method appears to fail when complex velocity models are used. A good
example of this is the failure of first arrival traveltimes to image the Marmousi dataset (Ge-
oltrain and Brac, 1993). This dataset was created specifically to test prestack velocity analysis
and imaging algorithms (?). When the true velocity model was released, it became clear that
the dataset could be imaged successfully with algorithms that used recursive extrapolation
of the full wavefield but it was not well imaged by non-recursive Kirchhoff migration algo-
rithms.There are two possible reasons for this:

1. Most Kirchhoff algorithms use first arriving traveltimes to approximate the full Green’s
function. The first arrivals may contain little energy. Imaging using these traveltimes
does not coherently stack the most important parts of the wavefield.

2. The traveltimes are usually calculated in the high frequency limit. If the medium is
dispersive these traveltimes will not be a good approximation to the traveltimes of the
seismic wavefield.

In this paper I propose a method that addresses both of these limitations. As with most meth-
ods, the Green’s functions are approximated by a single event model. The model is parameter-
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ized by a traveltime, amplitude and phase at each point. In my method the traveltime chosen is
the traveltime of the maximum energy arrival, not the first arrival. This is the best single event
approximation to the full Green’s function (in theL2 norm). The traveltime is not calculated
from a solution to the eikonal equation. Instead the parameters are estimated from solutions
to the Helmholtz equations at a few frequencies in the seismic frequency band. This ensures
that the traveltimes chosen are representative of traveltimes for waves in that frequency band.

BAND-LIMITED GREEN’S FUNCTIONS

The most common model for a Green’s function is one that parameterizes the Green’s function
in terms of “arrival time” and “amplitude”. This parameterization has the advantage that these
quantities can be used directly in time domain Kirchhoff migration or modeling schemes. The
Green’s function can be characterized by one or more “events” that arrive at each location.
Parameterization by a traveltime implies that the phase is a linear function of frequency for
each event. The justification for this event based model can be seen by looking at any seismic
section. The data is not a random mish-mash of unrelated amplitudes, it has the appearance
of a set of distinct events arriving at different times. The fact that distinct events are visible
means that many frequencies are arriving at the same (or nearly the same) time and are con-
structively combining to produce a band-limited event. This implies that the phases of the
different frequenciesfor each eventare not random; they must follow an approximately linear
trend as a function of frequency. A simple way of estimating a traveltime that is valid in the
seismic frequency band is to compute the full wavefield and then pick the maximum energy
arrival at each location. Indeed, this method has been used for the imaging condition in shot-
profile migration (Loewenthal and Hu, 1991). Unfortunately this method is very expensive, if
the modeling is performed in the frequency domain, it requires a finite-difference solution to
the wave equation for every frequency in the data. In contrast, a fast, explicit, eikonal solver
(van Trier and Symes, 1991) requires only one finite-difference calculation. The question that
I attempt to answer is “How few frequencies can we compute and still recover the correct
traveltime?”

Single event models

The simplest models are parameterized by one event. The simplicity of this model is very
appealing but it is only valid in very smooth velocity fields. In a complex velocity field there
are multiple paths from the source to one subsurface location, and thus multiple events. I
will start by considering single event models and then progress to multiple event models.
When there is only one un-dispersed arrival at each location, the Green’s function from source
location,s, to subsurface location,x, can be represented in terms of the amplitude,A(s,x),
traveltime,τ (s,x), and phase,φ0(s,x), of that arrival. I assume here that the arrival is an
impulsive event with a constant phase shift.

G(s,x,ω) = A(s,x)ei φ0(s,x) ei ωτ (s,x) .
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The total phase at any frequency isωτ (s,x) +φ0(s,x). The slope of the total phase gives the
traveltime and the intercept at zero frequency gives the constant phase shift. If the Green’s
function fits this model then linear interpolation of unwrapped phase will exactly recover the
phase for all frequencies. The amplitude is constant for all frequencies. If, for the given veloc-
ity field, we know that there is only one non-dispersed arrival, we need only extrapolate two
frequencies. The amplitude and unwrapped phase at each location provide enough information
to completely specify the Green’s function at that location. From the amplitude,A(s,x,ω), and
unwrapped phase,ζ (s,x,ω), at two frequenciesω1 andω2 we have: The average amplitude,

A(s,x) = (A(s,x,ω1)+ A(s,x,ω2))/2.

The slope of the unwrapped phase,

τ (s,x) = (ζ (s,x,ω2)− ζ (s,x,ω1))/(ω2 −ω1).

The unwrapped phase intercept at zero frequency,

φ0(s,x) = ζ (s,x,ω1)−ω1τ (s,x)

If it can further be assumed that all the arrivals are zero phase then only one frequency is
needed, as we have the implied condition that the phase at zero frequency is zero.

A(s,x) = A(s,x,ω1)

τ (s,x) = ζ (s,x,ω1)/ω1.

Implicit in many asymptotic schemes is the assumption that total phase is a linear function of
frequency for all frequencies from zero to very high frequencies. If this is not true the asymp-
totic methods may give solutions that are inappropriate for the seismic bandwidth. In contrast
the simple interpolation of two frequencies in the seismic frequency band only assumes that
phase is a linear function over that band.

Multiple events

When there are multiple arrivals at a single location the phase is no longer a linear, or even
a smoothly varying, function of frequency. Consider the case of two arrivals with amplitudes
A1, A2 and traveltimesτ1 andτ2. The wavefield is a linear superposition of the two arrivals.

P(ω) = A1ei ωτ1 + A2ei ωτ2

However the phase of the combined wavefield isnota linear superposition of the two phases.

P(ω) = A1cos(ωτ1)+ A2cos(ωτ2)+ i (A1sin(ωτ1)+ A2sin(ωτ2))

φ(ω) = arctan

(
A1sin(ωτ1)+ A2sin(ωτ2)

A1cos(ωτ1)+ A2cos(ωτ2)

)
Figure 1 shows the unwrapped phase for the combination of two events, one of amplitude 1.0
at 40ms and one of amplitude 0.9 at 80ms. While the phase curve clearly has an overall linear
trend it would not be well approximated by linear interpolation. Indeed it would be difficult to
use any low order polynomial fit to a sparse selection of points on the curve.
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Figure 1: Time domain plot and unwrapped phase curve for the superposition of two discrete
events. dave1-twophase[NR]

A non-linear problem

To fit an n-event model to the calculated mono-frequency Green’s functions, we must find
amplitudes,Ai , phases,φi , and traveltimes,τi , such that the calculated Green’s function,
P(ω), is predicted correctly for all modeled frequencies.

n∑
i =1

Ai e
i φi ei ωτi = P(ω)

An obvious way to solve this problem is to minimize a norm of the difference between the
predicted and observed data:

min
A,φ,τ

||

n∑
i =1

Ai e
i φi ei ωτi − P(ω)||

Any of a large number of norms could be chosen but theL2 norm is the most commonly
used. This is a non-linear problem and its solution may be prone to problems associated with
multiple minima, slow convergence, etc. A different approach to the problem can be taken by
noticing that it is the dual of a much more familiar problem. In geophysics, we often have
a sampled time series and we wish to estimate a sparse, spiky, frequency spectrum. In this
case we have a sampled frequency series and we wish to estimate a sparse, spiky, time-domain
representation. A large number of existing algorithms could be adapted for this task. Many
parametric spectral analysis methods are available, some have been used in seismic signal
deconvolution (Burg, 1975; Webster, 1978), others have been used for high resolution spectral
analysis in other fields (Kornberg and Paarmann, 1991; Kaveh and Barabell, 1986; Pisarenko,
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1972). I chose to first try a very simple method based on the Fourier transform. This scheme
was so successful that I did not experiment with the more complex methods. It is possible that
the more complex methods can accurately estimate the traveltimes from Green’s functions at
fewer frequencies. This would be important if the cost of calculating one frequency is large.

Event identification in the time domain

One simple way to identify the events is to inverse Fourier transform the data back to the time
domain.

P(t) =

∫
∞

−∞

P(ω)e−i ωtdω

Since the Green’s function is not calculated for all frequencies, this integral is replaced by a
discrete form. The Green’s functions is calculated for the set of frequencies,ωk = kδω ; kl ≤

k ≤ kh. The integral then becomes the sum

P(t) =

kh∑
k=kl

P(ωk)e−i k δω tδω .

The discrete sampling inω results in a replication in time:

P(t +n2π/δω) =

kh∑
k=kl

P(ωk)e−i k δω (t+n2π/δω)
=

kh∑
k=kl

P(ωk)e−i k δω te−ikn2π
= P(t)

When transformed back to the time domain the wavelet shapes and traveltimes of the true
wavefield are not lost. The wavefield is merely replicated at regular intervals, it is aliased in
time. If the aliases do not overlap, and the approximate position of the true alias is known then
it can be uniquely retrieved. In order to track the correct alias I perform the calculation in a
polar coordinate frame. Once I have calculated the wavefield in the frequency domain I can
attempt to estimate the traveltime/amplitude/phase that best fits the wavefield. If I know the
correct traveltime at one radius I can predict the position of the correct alias of the wavefield at
the next radius. Given that knowledge, I can pick the correct maximum-energy traveltime. By
extrapolating both the traveltime field, and the wavefield, outwards from the origin I am able
to overcome the problems caused by aliasing. Figure 2 shows the wavefield at one radius for
a medium with a circular velocity anomaly. The top left frame used all sixty-four frequencies,
the top right frame used thirty-two, the bottom left used eight and the bottom right used four.
It is clear that if we know which is the true alias, it can be separated from the others in all
the plots except the one created using four frequencies. In my algorithm a small number of
frequencies (8-16) in the seismic frequency band are extrapolated outwards from the source
location using a paraxial one-wave equation in polar coordinates (Nichols, 1993). The travel-
time and wavefield are both known at the origin and they are extrapolated outwards to fill the
whole space. At each radius the wavefield is parameterized by a traveltime/amplitude/phase
triplet. The traveltime is chosen to correspond to the traveltime of the maximum energy event
at each location. The algorithm at each radius is as follows.

1. Calculate the wavefield at the new radius for the sparsely sampled set of frequencies.
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Figure 2: Aliasing in time caused by sampling in frequency.dave1-aliases[NR]
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2. Choose a time window centered around the traveltime from previous radius.

3. Calculate a sampled time domain representation in the window by slow Fourier trans-
form.

4. Pick the maximum energy sample.

5. Use a quadratic fit to find the traveltime of the local peak of the energy function.

6. Calculate the amplitude, and phase at this traveltime.

The cost of this algorithm is surprisingly modest. In a constant velocity model it costs about
8 times as much as an explicit finite-difference solution to the eikonal equation. In a complex
model the cost of the two algorithms is about the same. In the complex velocity model, the
explicit eikonal solver must use very small radial steps to remain stable. The band-limited
Green’s function calculation is based on a stable wavefield extrapolator, so the grid, and hence
the cost, is independent of model complexity. The band-limited Green’s functions have several
desirable properties:

• They can be calculated in any slowness model, there is no smoothness constraint.

• The solution is found at every point in the subsurface (no shadow zones).

• The maximum energy arrival is found rather than the first arrival.

• The solution is an estimate of the Green’s function in the seismic frequency band not
the solution at very high frequency.

• Traveltime, amplitude and phase are calculated.

It also has some limitations:

• The traveltime field is discontinuous. This makes it harder to interpolate.

• No explicit rays or takeoff angles are calculated. They must be inferred from the travel-
time gradients.

GREEN’S FUNCTIONS IN THE MARMOUSI MODEL

Figure 3 shows traveltime contours in the Marmousi velocity model. The top frame is a first
arrival traveltime field calculated by a finite-difference solution to the eikonal equation. The
center frame is a maximum amplitude traveltime field calculated by paraxial ray-tracing, the
bottom frame is the maximum energy traveltime field calculated using my method. The lower
two estimates are discontinuous but they are both a better fit to the significant energy in this
model. This is illustrated in figure 4, each frame is one snapshot of the modeled impulse
response with the traveltime contour for that time superimposed. The top frame is shows the
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traveltimes from a finite difference solution to the eikonal equation. The middle frame shows
the traveltimes from paraxial ray tracing. The bottom frame shows the band-limited traveltime.
Figure 5 shows a comparison of the amplitude estimates for the paraxial ray-tracing and the

band-limited Green’s functions. The estimate made in the seismic frequency band is much
smoother and it does not show any of the instability associated with caustics that can cause
problems when using ray traced Green’s functions.

Imaging the Marmousi dataset

In another paper in this report a full comparison is made between the results of Kirchhoff
migration using the Green’s functions created using my method, and migration images created
using other methods (Audebert et al., 1994). In this paper I will only show two images.
The first, Figure 6, is the result of Kirchhoff migration using just the traveltime and phase
information from my band-limited Green’s functions. The second, Figure 7, is the result of full
wavefield shot profile migration using a correlation imaging condition. Both of these methods
produce structural images rather than reflectivity estimates. The two images are very similar,
Kirchhoff migration can produce good images in a complex model as long as the Green’s
functions are good estimates of the full wavefield. It is also possible to create a reflectivity
estimate using Kirchhoff migration/inversion (Lumley and Beydoun, 1991). Figure 8 shows a
close-up of the reflectivity estimates in the target zone of the Marmousi model. The top frame
is a bandpass filtered version of the true reflectivity, the center frame is the reflectivity estimate
created using paraxial ray tracing, the bottom frame is the estimate created using band-limited
Green’s functions. The bottom frame has a more continuous image and it is a better match to
the true reflectivity than the center frame.

CONCLUSIONS

I have presented a new method for estimating Green’s functions in complex media. As in many
traditional methods, the Green’s functions are parameterized by a traveltime/amplitude/phase
triplet at every point in the model. However these parameters are not calculated using a high
frequency approximation. Instead the solution to the Helmholtz equation is computed at a
few frequencies in the seismic frequency band. The parameters are then chosen to represent
a maximum energy arrival that fits these solutions. Prestack Kirchhoff migration images cre-
ated using these “band-limited Green’s functions” are superior to those created using other
traveltime estimation methods. They are very close in quality to the images created by full
wavefield extrapolation methods.
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Figure 3: Traveltimes maps for the Marmousi model.dave1-ttmaps[ER,M]
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Figure 4: Traveltime contour for 1.1sec. superimposed on a wavefield snapshot at 1.1sec.
dave1-all-tov-1.1[ER,M]
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Figure 5: Amplitude maps from paraxial ray tracing and band-limited traveltimes.
dave1-comp-amp[ER,M]
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Figure 6: Prestack Kirchhoff migration of the Marmousi dataset using band-limited Green’s
functions. dave1-marm-tp[CR,M]
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Figure 7: Shot profile migration of the Marmousi dataset. Imaged using a correlation imaging
condition. dave1-mig-shot-prof[NR,M]
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Figure 8: Close up of reflectivity estimates in the target zone.dave1-refl [NR]
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