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Matrix formulation of adjoint Kirchhoff datuming

Dimitri Bevc1

ABSTRACT

I present the matrix formulation of Kirchhoff wave equation datuming and show that up-
ward and downward continuation are adjoint to each other. By expressing the datuming
operator explicitly in matrix form, it is possible to examine the nature of the Hessian and
to show that Kirchhoff datuming is not idempotent.

INTRODUCTION

The Kirchhoff datuming codes I presented in earlier SEP reports (Bevc, 1992, 1993a) are ad-
joint operators which pass the dot-product test; however, the adjoint formulation was arrived
at by algorithmic considerations, not by formulating the operators in terms of matrix multi-
plications and taking their conjugate transpose. In this paper, I fill in this theoretical gap by
presenting the matrix formulation of the datuming algorithm. I also show how Kirchhoff da-
tuming can be cast as a multi-step depth extrapolation algorithm analogous to phase shift (Ji
and Claerbout, 1992; Popovici, 1992) and finite difference (Ji, 1993) formulations presented
in previous SEP reports. I begin by briefly reviewing Kirchhoff datuming. I then present the
matrix formulation of the operators, and conclude by incorporating these in a multi-step depth
extrapolation formulation.

KIRCHHOFF DATUMING

The upward continuation of a scalar wavefield can be expressed in integral form as:

P(0,z,t) =
1

π

∫
∞

−∞

dx
z

v

1

rx
Q(t −

rx

v
), (1)

whereP(0,z,t) is one trace of the upward continued wavefield at datum elevationz and lateral
positionx = 0 (Berryhill, 1979). The functionQ(t − rx

v
) is a time delayed filtered version of the

input traces on the original datum.rx is the distance between input and output trace location
andv is the propagation velocity. The purpose of the filtering operation is to compensate for
the Hankel tail of the output wavelet. For transformation of a wavefield from one datum to
another, a discrete form of equation (1) is a summation where each input tracePi , recorded at
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locationi along the lower datum is filtered and delayed by traveltimeti j . Mathematically:

Pj (t) =

∑
i

cosθi j Ai j Qi (t − ti j ) (2)

Ai j is an amplitude term incorporating spherical divergence and geometric terms,θi j is the
angle between the normal to the input surface and the straight line traveltime path connecting
input locationi and output locationj , andti j is the traveltime between the input and output
locations. Equivalently, the sum can be performed in the frequency domain where each output
trace is given by:

Pj (ω) =

∑
i

cosθi j Ai j e
i ωti j Qi (ω). (3)

By making the far-field approximation of the relevant Green’s functions, the filtering operation
used to compensate for the Hankel tail can be replaced by performing a half-order differential
of the data traces (in 2-D). This is computationally attractive because the half-order differential
is applied only once and does not depend on the indicesi and j . The algorithm can be applied
to zero-offset data or to shot and receiver gathers. Prestack datuming is done by extrapolating
the shots and the geophones separately (Berryhill, 1984). The extension to three dimensions is
straightforward and has the same algorithmic form. Equations (1) through (3) are for upward
continuation. For downward continuation the adjoint process is used.

SINGLE OUTPUT TRACE

Before writing down the matrix equations for Kirchhoff extrapolation one depth step at a time,
I will present the matrix equations for the conventional formulation of Kirchhoff datuming:
that is for extrapolation between two surfaces in one step.

Single output trace

For illustration I consider the simple case of three input traces and one output trace. Equa-
tion (3) can be expressed in matrix form as

[
p(ω,xj ,zj )

]
=

[
I I I

] Z11

Z12

Z13

 H
H

H

 p(ω,xi =1,zi =1)
p(ω,xi =2,zi =2)
p(ω,xi =3,zi =3)

 ,

(4)
wherep(ω,xi ,zi ) is the Fourier transformed input wavefield recorded at datumzi andp(ω,xj ,zj )
is an output trace at location (xj ,zj ). A half-order derivative is applied to the input data by the
block matrices

H =



√
−i ω1 √

−i ω2

.
.

.
√

−i ωn

 . (5)
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If the calculation were performed in the time domain and the far-field approximation were
not invoked, each of theH matrices would be replaced by a different matrix representing an
i , j -variable convolution operator. The block matricesZ11, Z12, andZ13 perform time shifts
and amplitude scaling of individual data traces. For a given time shiftti j , the time-shift matrix
is given by

Zi j =



Ai j ei ω1ti j

Ai j ei ω2ti j

.
.

.
Ai j ei ωnti j

 . (6)

The Ai j factors are amplitude scaling terms which embody the effects of spherical divergence
and obliquity. Finally, the summation of the shifted input traces is represented by matrix multi-
plication with the row vector having block identity matricesI as its elements. The summation
matrix and theZi j matrix can be combined to simplify equation (4) to:

[
p(ω,xj ,zj )

]
=

[
Z11 Z12 Z13

] H
H

H

 p(ω,xi =1,zi =1)
p(ω,xi =2,zi =2)
p(ω,xi =3,zi =3)

 . (7)

TIME-DOMAIN DATUMING AND MIGRATION

For completeness, I show how the matrices differ when datuming is implemented in the time
domain. If Kirchhoff datuming is implemented in the time domain, the Hankel tail can be
compensated for by performing anm-long i , j -dependent convolution. Then the matrixH
becomes

Hi j =



a1

a2 a1

a3 a2

. a3

. . .
am . .

am . a1

. a2

a3

.

.
am



. (8)

The time-shiftti j is represented by a sparse matrix which is non-zero along one particular
diagonal (or band) corresponding to the particular shift. For example, a time-shift matrix
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corresponding to a shift of two time samples is given by:

Zi j =



0 0
0 0 0
1 0 0 0
0 1 0 0 0

0 1 0 0 .
0 1 . . .

. . . . 0
. . 0 0 0

0 1 0 0


. (9)

If the data are linearly interpolated, the matrix will be banded (see for example Claerbout (1992)).

Kirchhoff time migration

Time migration by hyperbola summation is similar to Kirchhoff datuming except that in time

migration, the traces are shifted by a time-variant amount given byt =

√
t2
0 + x2/v2. In order

for equation (7) to represent time migration, the hyperbolic shifts would make the time-shift
matrix look something like this:

Zi j =



1
1

1 1
1 1 1


. (10)

MULTIPLE OUTPUT TRACES

In this section I generalize equation (7) to multiple output traces. For illustrative purposes, I
write down the matrix equation for three input traces and three output traces. The wavefield at
the upper datumz is p(ω,xj =1,zj =1)

p(ω,xj =2,zj =2)
p(ω,xj =3,zj =3)

 =

 Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

 H
H

H

 p(ω,xi =1,zi =1)
p(ω,xi =2,zi =2)
p(ω,xi =3,zi =3)

 . (11)

The time-shift matricesZi j correspond to equation (6) withi j corresponding to the time shift
between input and output locationsi and j . Equation (11) represents the upward extrapolation
of a wavefield between two arbitrarily shaped surfaces.
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Downward continuation

The downward continuation operator is derived by taking the complex conjugate transpose of
the operator in equation (11). This yields the adjoint operator: H∗

H∗

H∗

 Z∗

11 Z∗

21 Z∗

31
Z∗

12 Z∗

22 Z∗

32
Z∗

13 Z∗

23 Z∗

33

 . (12)

Equation (12) is the downward continuation operator for the extrapolation of a wavefield be-
tween two arbitrarily shaped surfaces.

IDEMPOTENCE AND THE HESSIAN

Downward continuation followed by upward continuation is given by the multiplication of the
operators in equations (11) and (12): Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

 Z∗

11 Z∗

21 Z∗

31
Z∗

12 Z∗

22 Z∗

32
Z∗

13 Z∗

23 Z∗

33

 . (13)

If the datuming is performed between level datums with constant velocity, the matrix equations
can be simplified by making the following observations and substitutions:

Z1 = Z11 = Z22 = Z33,
Z2 = Z12 = Z21,
Z2 = Z23 = Z32,
Z3 = Z13 = Z31.

Performing the indicated substitutions, yields the simplified matrices: Z1 Z2 Z3

Z2 Z1 Z2

Z3 Z2 Z1

 Z∗

1 Z∗

2 Z∗

3
Z∗

2 Z∗

1 Z∗

2
Z∗

3 Z∗

2 Z∗

1

 . (14)

Using the notationA2
i = Zi Z∗

i and carrying out the multiplication we obtain the following
expression for the Hessian matrix:

H =

 A2
1 + A2

2 + A2
3 Z1Z∗

2 + Z2Z∗

1 + Z3Z∗

2 Z1Z∗

3 + Z3Z∗

1 + A2
2

Z2Z∗

1 + Z1Z∗

2 + Z2Z∗

3 A2
2 + A2

1 + A2
2 Z2Z∗

3 + Z1Z∗

2 + Z2Z∗

1
Z3Z∗

1 + Z1Z∗

3 + A2
2 Z3Z∗

2 + Z2Z∗

1 + Z1Z∗

2 A2
3 + A2

2 + A2
1

 . (15)

This banded matrix is diagonally dominant with real valued terms on the main diagonal and
complex terms along the other diagonals. The datuming operator is not idempotent because
of the non-zero terms off the main diagonal. The consequence of this is that if the Kirch-
hoff datuming operator and its adjoint are applied repeatedly, energy will be lost with each
application.
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STEP-BY-STEP WAVEFIELD EXTRAPOLATION

The operator in equation (11) can be used to extrapolate a wavefield between two horizontal
planes. In this case, each application of the extrapolation algorithm is expressed by the matrix
operatorWi which is the operator in equation (11). For three depth levels, the Kirchhoff
datuming algorithm can be formulated as

[
p(ω,xj ,zj )

]
=

[
A B C

] W1

W2W1

W3W2W1

[
p(ω,xi ,zi )

]
, (16)

The algorithm can be generalized for any number of depth levels and any datum geometry.
A, B, andC are geometry matrices which correspond to the datum shape. These matrices
represent the action of selecting data traces on the new datum. The matricesA, B, andC
have non-zero elements only at certain locations along their diagonals where the wavefield is
to be extracted. For a more detailed description of these matrices, see Popovici (1992). For
downward continuation, the conjugate-transpose of equation (16) is taken to obtain the adjoint
process:

p(ω,xi ,zi ) =
[

W∗

1 W∗

1 W∗

2 W∗

1 W∗

2 W∗

3

] A
B
C

[
p(ω,xj ,zj )

]
, (17)

wherep(ω,x,z) is data recorded at some irregular datum. The matricesW∗

i correspond to the
operator in equation (12).

DISCUSSION AND CONCLUSIONS

For real problems, the operator representations of the preceding section result in huge, albeit
sparse, matrices. In the actual computer implementation of Kirchhoff datuming these huge
matrix operators are not actually stored. The numerical algorithms apply these linear oper-
ators indirectly and much more efficiently. Equations (11) and (12) represent upward and
downward continuation of a scalar wavefield in one step. These are the matrix equivalents of
the frequency domain datuming implementation I have presented in previous papers (Bevc,
1993a,b). A corresponding representation of Berryhill’s time domain algorithm can be ob-
tained by changing theH matrices to convolutional operators and casting the rest of the ma-
trices in equations (11) and (12) in the time domain (Bevc, 1992; Berryhill, 1979). Kirchhoff
datuming is represented as extrapolation of one depth level at a time in equations (16) and (17).
While computationally less efficient than the one-step method of equations (11) and (12), it
allows greater flexibility in specifying the velocity model. With some approximations, the
wavefield can be extrapolated through av(x, y,z) velocity model. The multi-step operator re-
sults in steeper Kirchhoff summation trajectories for each step than the one-step method. This
may allow steeper events to be handled with less aperture, therefore gaining some computa-
tional advantage. By examining the simplified datuming operator for the special case of flat
datums and constant velocity, I observe that the datuming operator is not idempotent and that
the Hessian is diagonally banded.
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