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Short Note

Measuring and modeling attenuation in rocks

Francis Muir1

INTRODUCTION

Cross-well seismic methods have been most discussed and perhaps found widest application in
the context of velocity estimation as an aid to finding, delineating, and monitoring hydrocarbon
pools. One reason for this is that it has called upon procedures and processes which are well
understood by the exploration community. At the same time rock physicists have known for
some time that under certain conditions fluids in porous rocks lead to quite unusual levels of
low-frequency seismic attenuation. Biot (1956) provides the basic theory behind this notion.
More recently Berryman and others (1988) and Norris (1993) have specialized the theory to
partially saturated rocks, where liquid sloshing is much facilitated by the presence of gas, with
the possibilities for quite dramatic levels of attenuation in passing seismic waves. While it
might be possible to base experimental design and analysis on some implementation of these
theories, as a practical matter it seems more expedient to develop schemes based on a simple
and self-contained heuristic, and this is what is done here.

A TOMOGRAPHIC INVERSION SCHEME

A tomographic data acquisition and inversion scheme for seismic loss might look very like
its velocity counterpart with the principal difference that log(amplitude) replaces travel-time
as the dependent variable. Also, since amplitudes contain no travel-path information, a linear
inversion scheme based on a straight-path assumption is used. Another major difference in the
suggested implementation is that the dependent variable is no longer a scalar but a 2nd rank
tensor. Loss at some location depends on the direction of the path through that position.
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The algorithm

A numerical algorithm might consist of the following steps.

1. Evaluate the logarithm of the amplitude of the first arrival.

2. Correct this value to first order for geometric spreading.

3. Insert this value into the leading location of an otherwise null 2nd rank loss tensor, and
rotate by the angle that the source/receiver line makes with the horizontal.

4. Distribute this tensor value over the straight path connecting source and receiver.

5. When all paths have been adjusted, model the total loss by integration along all the
paths, compare, and iterate if necessary.

Problems

While source initiation times do not present a problem in cross-hole seismic studies (although
defining arrival times might), absolute source amplitude information may be unavailable and
there may be fluctuations from shot to shot, caused by linear and non-linear interaction be-
tween the source and borehole. One solution is to assume homogeneity of loss in the subject
subsurface and solve for the source amplitudes, with the possibility of some high-pass filter-
ing of these results to lessen medium effects. An alternative method which has the merit of
simplicity would be to treat the sources as an extra column of material; a similar column at the
other side would account for receiver discrepancies.

Extensions

Since most loss mechanisms are frequency-dependent in some simple way, it might be rea-
sonable to divide the log-spectrum of the first arrival into chunks and solve for them inde-
pendently. Alternatively this log-spectrum could be characterized by the formK0+ K1 log(ω)
where K0 and K1 are solved for. If velocity and loss inversion schemes share a common
dataset, then they will also have the same structure for inversion. Apart from time savings,
there would also be some technical benefit. First, the schemes could share the same definition
of first arrival, and second, they could share the same, now no longer linear, back-projection
path. Although most seismic tomography schemes have used a scalar representation of time-
delay and its implied isotropy of the velocity field, Michelena et al. (1993) have described
a scheme for inverting for velocities under an elliptic anisotropic constraint which could be
simply implemented by using the scheme outlined in this paper, viz. replacing the scalar time-
shift with a 2nd rank tensor representation. If this is done then there is no particular hardship
in including elliptic forms that do not necessarily have a vertical symmetry axis.
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AN ELASTIC MODELING SCHEME

Conventionally, loss is introduced into the elastic wave equation by making the elements of
the stiffness tensor frequency-dependent, with constraints imposed by energy conservation
and causality. A problem with this approach is that it is not clear how or even why a loss
effect should be represented by a 4th rank tensor. If we are thinking of “slosh” as the loss
mechanism, then it seems more reasonable to think of loss as an inertial effect, closely related
to the permeability which is properly represented by a 2nd rank tensor, since, quite generally,
permeability is not isotropic. This being the case it seems reasonable to leave the stiffness
tensor frequency-independent, and modify the inertial term in two ways. In private discussion
Berryman has pointed out that this is precisely what his paper (Berryman et al., 1988) argues
for, although in a more restrictive, isotropic environment. The modifications to the wave
equation have been previously discussed by Muir (1992) and lead to the following result.

1. Replace the scalar mass densityρ with a tensor mass densityRi j .

2. Replace the constant elements ofRi j with functions ofs, the Fourier representation of
the time differential, so that the full inertial term is nowRi j (s)üj .

3. Replace the displacement variable,u, with an energy-flux variable defined

w = R(s)1/2u

With this definition the lossy wave equation has the following canonical form

R(s)−T/2
∇

TC∇R(s)−1/2w − ẅ = 0

and can be cast in Christoffel form for plane-wave solution.

CONCLUSIONS

In summary, I have tried to make the following points:

• Attenuation may be an important lithologic indicator.

• Loss has direction and is best viewed as a 2nd rank tensor.

• Tomographic inversion for loss parallels its velocity counterpart.

• Modeling loss due to slosh with a frequency-dependent inertial term is intuitive, theo-
retic and computationally reasonable.
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