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3-D migration velocity analysis with kinematic Kirchhoff
migration

Francois Audebert and Li TeAg

ABSTRACT

Migration velocity analysis includes both depth-focusing analysis and residual curvature
analysis of coherency panels. In either method, it is widely used for 2-D velocity analysis
in regions of complex geological structures. Unfortunately, since complex structureg tend
to be 3-D structures, 3-D prestack depth migration is desirable. The most commonly
proposed candidate is kinematic Kirchhoff migration. This paper describes how we can
use it as a datuming-migrating tool, to produce migration velocity analysis panels in 3-D
seismics.

INTRODUCTION

The accuracy of background velocity estimation determines the quality of migration. Con-
ventional stacking velocity analysis based on assumptions of zero dip and laterally invariant
velocity degrades in regions with complex geological structures. In such cases, depth mi-
gration is required, and migration velocity analysis is expected to provide a suitable velocity
model. The 2-D version of migration velocity analysis is commonly used to solve the imaging
problem in complex 2-D areas, either by focusing analysis or by residual curvature analysis
on coherency panels. Both methods rely on the assumption that doing prestack depth migra-
tion with the exact velocity model will produce an image with maximum power. Both also
allow for some measure of discrepancy from optimality: focusing at zero or non-zero time on
focus panels, alignment or residual curvature on coherency panels. These two methods are
by-products of prestack depth migration algorithms. Unfortunately, the complex structures,
for which migration velocity analysis is to be used, are generally three-dimensional. For rea-
sons of cost and volume of data involved, the traditional implementation of migration velocity
analysis will not be possible in three dimensions in the near future. Therefore we have to do
migration velocity analysis with the only available 3-D prestack tool: traveltime-based kine-
matic Kirchhoff migration. Moreover, even if this method were not the only one available

in three dimensions, its flexibility would still make it the preferred multi-purpose tool. This
report first discusses the depth-focusing analysis and coherency panels in two dimensions. It
then discribes a 3-D kinematic Kirchhoff migration and datuming algorithm and how to use it
as a datuming-migrating tool to do 3-D focus and coherency panel velocity analysis.

lemail: not available
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DEPTH-FOCUSING ANALYSIS IN TWO DIMENSIONS

From SG migration to focusing analysis

Depth-focusing analysis is derived from shot-geophone (SG) prestack depth migration. SG
prestack depth migration is based on the sinking survey model, described by Doherty and
Claerbout (1974). According to this model, a general datuming from depth level to depth level
is done by alternating downward continuation of shot gathers and downward continuation of
geophone gathers. After the whole survey has been “datumized”, that is, downward continued,
to a given level at deptl,,, imaging is done by invoking the proper imaging principle. The
imaging principle in this case states that the sample of the downward continued wavefield
at zero time and offset at a given depth point is proportional to the local reflectivity at this
depth point. We also have to satisfy the quality criterion that, assuming exact velocity, all
energy reflected or diffracted at the given depth point and recorded at the surface be totally
and perfectly back-propagated toward the depth point, and be focused at the depth point at
zero time and zero offset. In other words, if the exact velocity model is used, the migrated
image will have optimal power. When the velocity is not exact, as Doherty and Claerbout
(1974) pointed out, some focusing of energy will occur at a focusing depth, and at a time
different from zero. Various authors from Yilmaz and Chambers (1984) to Denelle and Jeannot
(1986) have derived formulae relating exact velocity and exact depth to migration velocity,
migrated depth, and focusing depth. Those formulae are derived from a 15-degree paraxial
approximation, with a horizontal reflector and a constant velocity assumption. The focusing
formulae are commonly used in two dimensions and turn out to be fairly valid as long as dip
and lateral velocity variations are moderate.

Tracking focusing depth

The focus panels are designed to track focusing dépththe extrapolation depth where fo-
cusing of a reflector occurs. This focusing is not necessarily observed at time zero, but it is
assumed to occur at zero offset. At this particular extrapolation, or datuming depthe
reflector is represented by an event at residual zero-offsetstinas follows:

27, 27
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WhereZ; is the real reflector depth; is the real medium velocitys is the focusing depth,
and Vy, is the migration velocity. When we locate the focusing of the evenZatét), we

know the vertical traveltime from the surface to the focusing depth, eql%l.tWe also know

the location of this event in retarded time coordinates, giverqz,T;byL dt. Finally, assuming

that the reflector is horizontal, the location of the event in retarded time coordinates is also
equal tot = 2Zw/Vm = 2Z; /V;. We now have all the ingredients to be used in the focusing
formulae.
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Building focus panels

To build focus panels at the selected locations, we extract the zero-offset part of the whole
downward continued survey for each extrapolation step in a time window centered on time
zero. The results are then converted into retarded time. Building focus panels is often per-
ceived as a variation of migration. It is migration with a relaxed imaging principle; the samples
of the downward continued wavefield are still extracted at zero offset, but in a time window
centered on zero time, instead of only at zero time. However, for our present purpose, we
consider building focus panels as a by-product of prestack datuming; we extract a part of the
zero-offset component of a whole datumized survey, for all datuming steps. Since the data
extracted after downward continuation is still in the time domain, we consider that there has
been no imaging and no mapping from time to depth, but only datuming. We notice that
focus panels can be obtained through datuming and there is no particular assumption about
the method used for datuming. It is important to note that there is no 2-D assumption in the
theory of focusing analysis. In three dimensions, the theory remains unchanged, and so does
the small-dip, mildly varying velocity assumption. Therefore building focus panels in three
dimensions becomes a problem of doing 3-D datuming, no matter what 3-D datuming tool we
choose.

COHERENCY PANELS IN TWO DIMENSIONS

Like a focusing panel, a coherency panel is a tool for migration velocity analysis, obtained
from migration methods other than the SG migration. The coherency panels usually produced
in two dimensions are either obtained from 2-D shot-profile migration, or from 2-D common-
offset migration. In both cases, a coherency panel is produced, after migration, at a given CMP
or (X,Y) surface location. This coherency panel is made of several migrated traces, aligned
along an analysis axis, which is called thi#setaxis. In the case of common-offset migra-
tion, the coherency panel is a CMP gather (common midpoint gather) anufffietis the
original offset of the input traces. The coherency panel can be viewed as a depth coordinate
equivalent of a classic CMP gather after NMO correction. In fact, the interpretation of such a
coherency panel is similar to a residual NMO inversion. In the case of shot-profile migration,
the coherency panel is a true CDP gather (common depth-point gather) aoifisttés the
migration offset. The migration offset is defined as the offset between the shot location and
the depth point location. Al-Yahya (1986) and Cox (1989) proposed a method of analysing the
residual curvature exhibited in such panels. With both types of migration, the coherency pan-
els are built with partial image traces. The partial images come from the migration of selected
subsets of the input data. The final migrated image is obtained by stacking the partial images,
CDP by CDP for shot-profile migration, or CMP by CMP for common-offset migration. Of
course, to yield an optimal image, all traces of a coherency panel should be stacked construc-
tively. They should be coherent, aligned with one another along the stacking axis. Horizontal
alignment of the traces in a coherency panel is the quality criterion. The residual curvature is
the object of analysis. Finally, the building of coherency panels is a by-product of shot-profile
or common-offset migration, but we are given free choice of the algorithm for these migra-
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tions. There are no 2-D assumptions made either; we can construct 3-D coherency panels as
soon as we have a 3-D shot-profile or common-offset migration. Since these migrations can
be done by Kirchhoff methods, a low-cost kinematic Kirchhoff method is a straightforward
choice for 3-D applications.

3-D KINEMATIC KIRCHHOFF MIGRATION

Finite difference algorithms work well for 2-D depth migration and its by-product, focusing
analysis. But in three dimensions, the size of the computational space containing the input data
requires an intractably large calculation and memory space. Moreover, when the shots and
geophones are not on a regular grid, a complicated interpolation is required before migration.
The migration of a whole 3-D dataset by a Kirchhoff migration still demands a huge memory
space, and is very expensive as well. But the advantage of Kirchhoff methods is the ability
to process any subset of input data along with any subset of output images. This means that,
with Kirchhoff methods, we can break the migration problem into almost as many parts as we
want: aliasing is the only limiting factor. Since migration velocity analysis is simply taking
subsets of input data (all data, shot-gathers, common-offset gathers), to produce sparse outputs
(a few panels), a point-to-point algorithm like the kinematic Kirchhoff algorithm is preferable.
There is an abundant literature on theory of Kirchhoff methods, so we will not detail it. In the
simple kinematic versions, the complex Green’s functions involved in the Kirchhoff integrals
are reduced to traveltime and amplitude factors. The traveltime factor is a simple time-delay,
the total traveltime computed from source to depth-point and from depth-point to receiver. The
amplitude factor is an obliquity correction, multiplied by an approximate spherical divergence
term, or just by 1 in the most basic kinematic form. Traveltime computation is essential to
kinematic Kirchhoff migration, and 3-D migration requires a 3-D traveltime computation.

3-D TRAVELTIME TABLES

A broad review of traveltime computation methods is done in this rep@yt,f¢llowed by

a few examples, (Audebert et al., 1994). Any method applied to three dimensions is wel-
come, provided it is reliable and robust enough. Low cost is important too, though less so in
migration velocity analysis, where input and output are far smaller than in a full prestack mi-
gration. Nevertheless, one wants to iterate the evaluation of the velocity model at reasonable
cost. It may be preferable to track most energetic arrivals, rather than first arrivals. It may
also be preferable to have correct rather than approximate amplitudes. However this point
is probably not critical enough in migration velocity analysis to justify the extra cost. After
all, the criteria used in migration velocity analysis are more kinematic than truly dynamic.
A final consideration is flexibility. Any future work using 3-D migration velocity analysis
may involve traveltime computation from any source to any target. Therefore methods with
constraints such as sources at the surface should be avoided. For the moment, our choice is
Podvin’s method, because it exists in three dimensions and is available. Moreover, its robust-
ness, its flexibility, and the fact that it works on a rectangular slowness grid (the most basic
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and common velocity model description) justify the choice until a better contender becomes
available. Its weaknesses are that it is not very efficient on computer, and produces only trav-
eltimes, mainly for first arrivals, but no amplitude and phase information. Podvin’s method is
briefly described in this repor®}.

3-D PRESTACK DATUMING

Datuming and S-G prestack migration are strongly related. As we have mentioned, S-G
prestack migration is based on Claerbout’s “sinking survey” model, and is simply a depth-step
by depth-step datuming of a whole survey. Of course, the finite-difference implementation of
2-D SG migration takes full advantage of the fact that the extrapolated wavefield &t stép
depends only, in a one-way approximation, on the wavefield extrapolated & steirch-

hoff implementation of SG migration is not efficient. The case might be different if there were
only one extrapolation step, as in the datuming case, or several but to a small target, as with
the focus panels. Thus it is interesting to describe 3-D datuming with regard to a kinematic
Kirchhoff implementation.

Datuming is an alternating downward continuation of shot gathers and geophone gathers,
from the surface to a chosen datum level. Datuming is based on Huyghens’s principle. Ac-
cording to this principle, if we neglect any reflectivity or source term between the surface and
the datum, as in a water layer, for a given shot experiment the reflected upward-propagating
wavefield reaching the receivers can be seen as coming from secondary sources at datum level.
The secondary sources are no more than the reflected upward-propagating wavefield passing
through each point of the datum surface. In the case of a single marine shot, if we neglect
water-bottom multiples, the primary wavefield recorded by the receivers is really an upward-
propagating field that passes through the water bottom. Every point at the water bottom acts as
a Huyghens secondary source for all the receivers of the shot-gather. Since in a mathematical
world we can play back the time, we can reverse the role and have every true receiver in the
shot-gather act as a secondary source for the water bottom considered as one huge receiver
array. We can compute the wavefield that has passed through the water bottom. In datuming,
for every shot experiment, the receivers at the surface act as Huyghens’ sources for virtual re-
ceivers on the datum. We then invoke the principle of reciprocity, which states that geophones
and shots can be exchanged, in other words that a common receiver experiment is “identical”
to the shot experiment in which the shot is put at the common receiver location and receivers
replace shots. The sections that follows detail the datuming process as a matter of alternated
datuming of shot gathers and datuming of geophone gathers. From now on, we adopt the
following notations:S = (xs, ys,z = 0) is the source at the surfacg.= (xg, g,z = 0) is the
receiver at the surface = (Xe, Ye, Ze) iS a point in the subsurface, a target for the datuming.

S = (XS, Ys, Z5) is @ source at datum depth. é/ = (Xg: Yg: Zg) is a receiver at datum dep#.
A(w,3,8)é?@58 js the Green’s function from shatto depth poin®. A(w,s,8) is the Am-
plitude factor of the Green’s function. It includes obliquity and spherical divergence factors.
¢(w,S,€) is the phase of the Green’s function. In the case of only one arrival, this phase typi-
cally takes the following form, where(s, €) is the traveltime frons to & ¢(w,$,€) = wt(S,€)

The sign of the exponential, in the expression of the Green’s function, depends on whether
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we do datuming upwards (increasing time, positive sign) or datuming downwards (decreasing
time, negative sign).

Datuming of a shot gather

The description of the datuming of a shot gather applies to any shot or geophone gather. A
shot gather is a physical experiment, and according to reciprocity, any geophone gather is a
physical experiment too, identical to the real experiment with permutated shots and receivers.
Moreover, Claerbout (1974, 1985) showed that the process of downward continuation of shot
gathers can be fully separated from the downward continuation of geophone gathers. The
reason is that the double square root operator of the scalar wave equation does not have cross
terms insg, or equivalently that the extrapolation formula is fully separablé andg. As

a consequence, we can restrict our observations to the downward continuation of one given
shot gather, and later apply the same reasoning to any shot or geophone gathers. Given a shot
experiment, let) (w, S, d) be the upcoming wavefield emitted by the souscand observed at
receiverg. We can reconstruct the seismic traces with the same sSwnethe acquisition
surface, but with new receiveg}s at the datum level, as follows:

U(@,89) = / A@,5,3)€°@5 DU (0,3,5)d3 @
g

Thus, in a marine case, we can recreat the wavefield at the water bottom, for a given shot as
shown in Figure??.

.[francois1/Fig/datum3.pdf

Figure 1: Datuming of a shot gather. Every receiver at the surface is a Huyghens’s source
where the source wavelet is the true recorded wavefield. This Huyghens’s source wavelet is
back propagated toward the new receivers at the datum level.
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Datuming of a geophone gather

Having performed the preceding operation for every shot gather, we then sort the traces into
geophone gathers. For every geophone gather, the geo@mimady lies on the datum,
while the shots still lie on the acquisition surface. We now perform the same operation that
we did with the shot gathers: we extrapolate the geophone gather to new shot losations

the datum, as indicated by FiguP@. The datumized trace for a geophone Iocatfpland S

shot locatiors/, both on the datum, is then

U(w,s,q) = / A0,3,5)9@3)U (0,3, g')ds (3)
S

By nesting in this expression the shot gathers previously extrapolated, we obtain the general
datuming expression

U(w,s,q) = / A(w,3,5)e #@8S) [ / A, §,9)e* @SN (.3, @)d@] ds (4)
s g

It is important to remember that andg’ are on the datum (output), asdand § are at the
surface (input).

.[francois1/Fig/datum4.pdf

Figure 2: Datuming of a geophone gather. Once all the receivers have been brought to the
datum level, the reciprocal operation then brings the shots down to the datum.

Simplification of the general datuming expression

As shown in Equation 4, the general datuming expression we just derived has a theoretical
form. We now introduce some simplifications to clarify its meaning and extract some interest-
ing conclusions. 1) Replacing integrals with sums:

U(S.9)=) A®3Ss)e ¢(@8s) [Z A(w,§,9)e?@ 3N (0,3, @)Ag} As  (5)
s 9
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Passing from continuous to discrete representation is legal if the sampling is fine enough and
the aperture wide enough. The obliquity factor is not to be forgotten, because even though we
work with discretely sampled point sources and point receivers, we assume that they represent
real sources and receivers. The width of those theoretical areal sources or receivers is, re-
spectively, the source or receiver increment, according to Huyghens'’s principle. 2) Replacing
regular sampling with irregular sampling: unfortunately, the actual sampling on the field is not
always regular, which has to be taken into account. Hence, this is not quite a simplification.
3) Assuming unique traveltime from point to point, The expression of the (pre-computed)
Green’s functions simplifies to

¢(w7§7 é) = —G)T(g, é) (6)
A(w,S,€) becomes independent of the frequency and is simplified as
A(w,S,8) = A'(5,6) (7

The expression of the datumized trace becomes
U(a),g/,é/) — Z A/(g’gx)e—iwr(§,§/)|:z A/(@,é/)e—iwr(g@)u(w,g, Q)AQ]AS ®)
s 9

Since we assumed the Green’s functions to be independent of frequency, we can go back easily
to the time domain. We Fourier transform back to time as follows:

Pts.g)=) " f AES)A(G,g)e 09Ny (0,8, g)agasds  (9)
s g Y@
and finally we obtain the simplified discrete expression
P(t,s.g)=>_ > AES)A®G9)A0AsPt—7(,5)-7(3.9)58  (10)

s g
It is interesting that this expression can be translated as 1) Shifting the inputRragq

(S, §/) + r(@,g}) ], the sum of the traveltime from the source to the new source and the trav-
eltime from the receiver to the new receiver. 2) Applying the weig§ii§,s') A'(g, 9’ ) AgAs.

3) Stacking the traces. This process constitutes a simple kinematic Kirchhoff datuming. If

the weightsA'(S, 5/) and A’(@,g_f/) are set equal to one, the kinematic datuming requires only
traveltime information. It reduces to a simple shifting and stacking process. Although this
sounds simple, in general datuming involves as many output traces as input traces, and as
many big traveltime tables. Such general datuming is impractical and useless on the scale of a
3-D survey. The datuming tool we have described can be useful only for limited objective or
small amount of data, for instance, the building of focus panels.

3-D FOCUS PANELS

Producing focus panels, either in two or three dimensions, amounts to producing zero-offset
traces through prestack datuming, at a set of extrapolation depths. The focus panels, as pro-
duced by SG prestack depth migration in two dimensions, are composed of zero-offset data,
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saved at every extrapolation depth, for a given (sparse) number of X locations. The purpose
of focusing analysis is to observe the eventual focusing of energy, occuring at the zero offset
for some extrapolation depth (focusing depth), and at some non-zero time (or at zero time if
optimal velocities are used in migration). Thus, in building focus panels we must keep, at

every extrapolation step, the zero-offset component of the newly datumized wavefield in the
vicinity of zero time.

Producing datumized zero-offset traces in three dimensions

In three dimensions, given the panel locatiag, o), to extract the zero-offset output traces
from the general datuming formula, we set ﬁ’ =m,

with m = (xo, Yo, Ze), Wherem is a target depth point. The desired output zero-offset trace can
then be expressed directly as a function of the input traces at any offsets, as follows,

P(t,m) =) "> AGEMA(GMAgAsSP[t+1(5,M)+1(d,M),s,d] (11)
s g

As mentioned in the preceding section, we can assume that we have precomputed amplitudes
and traveltimes for the given CMP location and the given extrapolation depth. Thus, producing
a zero offset trace after prestack datuming simply consists of these steps: 1) Shifting every

input trace with the computed traveltimgs, m) + z(g,m). 2) Applying the precomputed
scaling factorA'(S,m)A’(§,M)AgAs. 3) Stacking the traces in a specified window around

time (S, M) + (g, m).

Computing Green'’s functions for the panel location

Let us look at the traveltimes (or Green’s functions) computation we have thus far assumed
to be done beforehand. Given the panel locatixyyp), we need to compute the Green’s
function between a column dflz depth points Xo, Yo, Z), regularly sampled in depth with
stepd Z and a regular grid of surface points ¢, Z = 0), as shown in Figur@?. We can make

the following observations: 1) The surface points are limited to an&#e#&, x Ny around the

panel location. The radius of this ar&as something like the maximum offset of the survey,

or an aperture related to the depth of the target. 2) The raypaths between thxpon®)

and the are& can be expected to remain within the voluMe= Sx Z, including both the

depth points and the “aperture” surface afa3) The number of depth pointdz on the
column o, Yo) is generally far smaller than the number of shot and receiver locations in the
surface are&, sampling steps being equalz <« Ny x Ny 4) Finally, by taking the “sources”

of traveltime at the depth points instead of the surface locations, we reduce the number of
“sources” in the traveltime computation stage, as shown in Fig@reMoreover the volume

V can be adjusted with the current source deptiwe only need to compute the traveltime

in the layer between the depth point and the surface, if we ignore turning waves, as shown in
Figure??.
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.[francois1/Fig/panell.pdf

Figure 3: Location of a focus or coherency panel: a column in the middle of an illumination
area Nx * Ny. Any source or receiver in this area can be expected to contribute to the panel at
(X0,Y0).

The cost of producing focus panels

The cost of traveltime computation is proportional to the number of sources times the com-
putation volume per source. Given the number of souMgsthe computation volume per
source isV = Sx Z/dZ = Ny Ny x Z/dZ, and the cost of traveltime computation is pro-
portional toNz « Ny« Ny« Z/dZ. The cost of the datuming stage itself is proportional to
the number of input traces times the number of output traces. The number of input traces
approximately equals thiy x Ny fold, where fold is the average number of traces per surface
location. The number of output tracesNs * Npaneis Finally, the cost of the datuming stage

is Nz * Npanels* Nx * Ny* fold. Given a reference cost of the chosen traveltime computation
method, and the unit cost of kinematic Kirchhoff migration, one can easily compute the cost
of building focus panels on a given machine. It may be reasonably cheap, and certainly several
orders of magnitude cheaper than 3-D prestack migration. Thus, it is probably worth iterating
upon the velocity model before launching the full 3-D prestack depth migration process.

3-D COHERENCY PANELS

For a given locationxp, Yo), a coherency panel is a set of column images obtained from dif-
ferent subsets of input traces. A subset is, for instance, a common offset or a common shot



SEP-80 3-D migration velocity analysis 11

.[francois1/Fig/panel2.pdf

Figure 4: The traveltimes need to be computed in a volume surrounding the panel location
(X0,Y0). They can be computed either way, from the surface Nx * Ny to the depth column
Nz, or vice-versa.
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..[francois1/Fig/panel3.pdf

Figure 5: The computation volume for the traveltime can be adjusted with the depth of the
target.

gather.

Building a 3-D coherency panel

To build a coherency panel at locatioxy(yo), given an array of andg pertaining to the
defined subset, we set the zero-offset conditios asj’ =m,

with m = (Xo, Yo, Ze), and the imaging condition d@s= 0. Finally, a coherency panel is built
as a migrated image, by shifting, weighting and stacking the input traces, as follows,

P=0)=)_ Y AGMA@GMAgASPlrEM+7@Gm).58  (12)
s g

In building a coherency panel, the only real difference from producing a migrated image is that
in our case the segregation of the input subsets is preserved. Of course, the output is, spatially,
far sparser than that of full migration. The coherency panels are not conterminous.

The cost of producing coherency panels

The traveltime computation stage is exactly the same as in the focus panel case. In fact, it
would be optimal to produce both kinds of panels at the same time. The only extra step is a
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further interpolation along the depth axis, because typically coherency panels have the same
fine depth sampling as migrated sections. The cost of imaging itself is proportional to the
number of input traces per subset, times the number of subsets, times the number of panels,
where:

Number of input traces: Ny s Ny fold

Number of output traces = Number of subsets * Number of panels

Again, once having estimated the unit cost of traveltime computation and Kirchhoff migration,
one may find the building of coherency panels reasonably cheaper. It would then be worth
the price of iterating upon the velocity rather than daring a 3-D prestack migration on an
unchecked velocity model. Moreover, the use of focus or coherency panels is based on the
satisfaction of kinematic criteria, for which the relatively unsophisticated kinematic Kirchhoff
migration might be quite sufficient. The refined tuning of Kirchhoff migration, necessary to
obtain high-quality migrated images, may be unnecessary for the purpose of velocity analysis.

FUTURE STUDIES

Our immediate goal is to complete and fool-proof these tools for migration velocity analysis.
Then we need to address the problems of irregular coverage and fold, and of aliasing. Though
we claim that we are using kinematic, not dynamic, criteria, we will need to be careful to
process amplitudes. All these problems occur with 3-D prestack kinematic migration, and
will probably be addressed as this method is developed. The focus panels and coherency
panels we have described are just tools, building blocks for migration velocity analysis. Our
ultimate goal is to do true 3-D migration velocity analysis. An initial step will be to check
and adapt to three dimensions the existing 2-D methods. Thereafter, the specificity of three
dimensions may suggest novel 3-D methods for us to develop in future studies. This would be
a second step for our research.

CONCLUSIONS

We have described how kinematic migration, based on traveltime tables, can be modified into
a datuming tool, to build focus and coherency panels for migration velocity analysis. Though a
general 3-D datuming would be unrealistic owing to the size of the data involved, the building
of focus or coherency panels is a local process, costing little in itself, and requiring little
sorting of input data. These features make migration velocity analysis in three dimensions an
available and affordable process.
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