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3-D prestack depth migration: Why Kirchhoff?

Francois Audebett

ABSTRACT

3-D prestack depth migration is emerging as an industrial imaging tool. Many competing
algorithms have been proposed by various authors. Nevertheless, the real bottleneck in 3-
D prestack processes is the sheer amount of input and output data. This paper reviews the
principal migration methods on the basis of their capacity for data manipulation, without
evaluating the algorithms themselves. It concludes that Kirchhoff methods are the best
first candidates, while other methods dealing with subsets of input data may have|to be
taken into account in the future.

INTRODUCTION

Prestack depth migration in three dimensions is expected to become a routinely available imag-
ing tool within a few years. Many authors have already formulated algorithms: Wapenaar et
al. (1986); implementations: Lumley and Biondi (1991), Cabrera et al. (1992), Cao (1992);
and even real-case experiments: Western and Ball (1992), Ratcliff (1993), to mention but a
few names. Nevertheless, 3-D prestack migration is an expensive tool, whatever algorithms
are used. The immediate priority is to reach feasibility, first with simplistic algorithms; re-
finements will follow in due time. The fundamental hindrance is not the mathematical com-
plexity of the data processing involved; it is the huge amount of data. The massive amounts
of data saturate present-day capacities for number crunching, memory space and input/output
management. Technologies evolve, but at very different rates: for instance, computer power
increases much faster than input/output speed or memory capacity. Hardware characteristics
set the rules with respect to software development. As a consequence, the strategy of data
management is of paramount importance. The goal of this review is to categorize the existing
or potential 3-D prestack migration methods, on the basis of their abilities to manipulate data.

THE HEAVY COSTS OF MIGRATION

The 3-D post stack migration of a big survey, performed with explicit finite-difference algo-
rithms saturates both the memory and the CPU capacity of the most powerful existing ma-
chines.

lemail: not available



2 F. Audebert SEP-80

Migration versus machine capacities

As of today, the post-stack migration of large 3-D surveys, with the most sophisticated imaging
tools, may exceed the capacity of the available machines. A typical sophisticated post-stack
imaging method would be a 3-D explicit finite-difference migration. It must be 3-D, because
Earth is now acknowledged, in the seismic processing industry, to be three-dimensional. It
must be a finite-difference code, because such codes are efficient at handling amplitudes in
variable velocity media. And finally, explicit operators, such as Hale-McClellan, Hale (1991),

or Remez-Soubaras, Soubaras (1992), are recommended for the sake of numerical azimuthal
isotropy. In the post-stack case, the original 3-D data are already stacked; a significant conden-
sation of data has been done. Moreover, the finite-difference algorithms work i@,the/)
domain, and frequency slices can be processed independently. Thus a smaller volume of data,
with respect to the volume of the prestack survey, is actually present at any given time in the
machine. In spite of this enormous condensation of data volume, both the I/O capacity and
the memory capacity of the today’s biggest existing machines are stretched to the limit, even
for less than gigantic 3-D surveys. Today, the CPU time required for a large survey is on the
order of days. This is problematic considering the conventional wisdom that a process requir-
ing one to several weeks of CPU time is not realizable, at least as a routine process. In the
sections that follow, | take this most sophisticated 3-D post-stack migration as a standard of
comparison and the unit of feasibility. In comparison, any 3-D prestack migration will then
take several orders of magnitude more time and resources, simply because the amount of in-
put data is several orders of magnitude larger. Not all 3-D prestack strategies are equivalent.
Any prestack migration process deals with some kind of subset of data at a time; the subsets
differ depending on the strategy adopted. Moreover, some strategies may be more efficient,
for instance, at not handling unnecessary zeroes or at avoiding multiple access to input data.
It is the aim of this study to compare on a common reference basis those different strategies.
| intentionally refer here to migration strategies rather than migration methods or algorithms,
because the comparison concerns the strategies of handling the data, not internal algorithmical
or mathematical aspects.
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Typical figures for an average 3-D survey

From seismic acquisition and processing, one can extract an average pattern for a 3-D survey,
shown on Figures 1 and 2. The key parameters for the input traces are the number of shots

.[francois2/Fig/cube3.pdf

Figure 1: The global image volumé, x Ny * N, of a 3-D survey , and the subvoluni x
My x N zilluminated by a shot experiment.

Ns, the number of receivers per shidg, and the number of time samples per trée The

key parameters for the survey pattern are, 1) the number of bins in the X and Y direbtjons,

and Ny, which corresponds to the midpoint dimension, and 2) the maximum extent in X and
Y of a common shot array, expressed in number of lpsandny, which corresponds to the
offset dimension. Finally, an additional key parameter for migration is the extension in depth
of the velocity model and the output image:

Nz depth steps at the scale of the velocity grid. All important figures and volumes of the 3-D
survey can be expressed with these parameters. This paper uses the following conventions:
1) the solid brackets [ ] enclose fundamental or unsplittable quantities, & iN\];

2) products without a separating asterisk * indicate homogeneous volumes\ablinwhere

Nx andNy are interchangeable;

3) products with a separating asterisk * indicate the product of heterogeneous quantities, as in
N, * [ Nx Ny] whereN,, is a number of frequency slices andy{ Ny] is the size of one slice;

4) the parentheses () will denote an intermediate hierarchy of processes or subsets. Finally,
the typical magic numbers are as follows.

e Acquisition data

e Number of shotdNg ~ 2.5x 10%.
o Number of traces per shdty ~ 5% 107,

e Trace lengthN; ~ N,, ~ 10°.
The number of samples for the input traces is approximately the same in the time
and frequency domains.
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.[francois2/Fig/cube4.pdf

Figure 2: The surface extension of a common shot amayny, and the surface extension of
the illuminated volumeMy x M.
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¢ Total acquisition data volume Ngx* Ngx Ny ~ 12.5% 10°.
These are the data recorded in the field, the total number of traces times the number
of samples per trace.

e Gridding of the survey:

e Grid size (surface) Ny x Ny ~ 10°.
This is the total number of bins of the survey, wittx ~ Ny ~ 103

e Grid size in depth Nz ~ 1(?.
This is the number of extrapolation steps; the number of samples in depth of the
image is~ Nz x 10.

e Area covered by a common-shot arrapny ~ 10°.
This is the area covered by a 3-D shot gather, in number of bins.

e lllumination window of a shot My * My &~ 10%.
This is the projection at the surface of the volume actually illuminated by a shot
experiment, expressed in number of bins.

e Auxiliary volumes

e Total velocity model =Ny s Ny « Nz ~ 10°.
e Traveltime volume for one sourceMx x My x Nz ~ 10°.

e Total traveltime volume Ny x Ny %[ My x My % Nz] ~ 102,
This is the volume illuminated by a shot experiment, times the number of surface
locations.

THE REFERENCE MIGRATION

On this average representative 3-D survey, the last step of standard seismic processing would
be today the most sophisticated 3-D post-stack migration available.

An explicit finite-difference method of 3-D post-stack migration

The reference 3-D post-stack migration | have chosen is a frequency-space, explicit finite-
difference method. Though | have selected a specific migration method, it is quite repre-
sentative with regard to data-wise strategy. The situation would be nearly identical for any
post-stack frequency-space or frequency-wavenumber algorithm such as the Stolt, phase-shift,
PSPI, split-step algorithm. The only difference would be the value of an atomic algorithm-
dependent factor. In the remainder of this paper, the algorithm factor for post-stack is rep-
resented by a coefficie1, and the prestack algorithm factor by the coeffici&nt The
algorithm factor for Kirchhoff algorithm, is generally different, and is represented here by the
coefficientK,. As previously specified, the quantity between solid brackets [ ] represents a
irreducible, non-splittable, basic unit of dasalNPUT = N,, * [ Nx Ny]
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There areN,, independent frequency slices, each of shktgx Ny. ¢ MEMORY = N, *

[Nx Ny] + output + velocity model.

There are, at any given time in memory at least one ofNfé&equency slices, plus the output
volume (the migrated image), plus the velocity mo@aCPU COST =K x N, *[ Nz * Nx Ny]

The cost is an approximately linear function (for high values) of the size of the frequency slices
processed, and a linear function of the number of frequencies processed. In the average 3D,
one has:Nx ~ Ny ~ 10°, N, ~ 10%, and Nz ~ 5% 10?. Nevertheless, this study does not
concern the absolute values of input size, memory requirement, and computation cost. | only
use them as a standard for comparison.

3-D SG MIGRATION

SG migration is a favourite prestack migration in two dimensions. It is legitimate to think of
its extension to three dimensions.

An explicit finite-difference method of 3-D SG migration

An SG migration by an explicit finite-difference algorithm would be the ultimately perfect
method of 3-D prestack migration, if it were available. It would combine the good behaviour
of 2-D SG migration in complex velocity model, with the good numerical isotropy of the zero-
offset migration by explicit finite-difference operators (preceding section). Algorithmically
speaking, it is identical to its zero-offset (= post-stack) equivalent | have described in the pre-
ceding section, but with extra offset dimensions. Every bin of the zero-offset case is the site of
a virtual shot, with a two-dimensional regular receiver array centered on the bin. This virtual
regular receiver array should include the largest common-shot arrays and common-receiver
arrays of the survey. The SG migration is based on alternated downward continuations of
common-shot gathers and downward continuations of common-geophone gathers. The down-
ward continuation of a common-shot gather or a common-geophone gather is very similar to
the downward continuation of zero-offset data, all surface dimensions being eqi&UT

= Nw*[NX Ny*nxny]

Each of theN,, frequency slices can be processed separaée EMORY = N,, * [ Nx Ny *

nyny] + output + velocity modeb CPU COST =K % N, %[Nz s (Nx Ny * nyny)] Typically

(nkny) ~ 10°

Performance ratio with respect to 3-D post-stack migration

To obtain the performance ratio, | divide the cost and volume by those of the reference 3-D
post-stack migrations MEMORY: (nxny) ~ 10°to 10* e CPU COST 2 * (nyny) ~ 12 (10°

to 10%) The ratioE—i may be as low as 2, but even in this most favorable case, one is left with
four orders of magnitude beyond the present feasibility threshold. The figures are similar,
except for the value of the coefficiet,, for 3-D prestack Stolt, phase-shift, PSPI, split-
step, and others frequency-space or frequency wavenumber algorithms. Three-dimensional
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SG Kirchhoff migration is not considered here, because simulating downward continuation
with Kirchhoff methods is comparatively very costly and inefficient. Clearly, SG migration

in three dimensions is not feasible for the near future. There are four orders of magnitude to
gain, which requires many more years of technical progress.

3-D SHOT-PROFILE MIGRATION

Shot-profile migration is commonly used in two dimensions, in the implicit finite-difference
implementation, as an alternative to SG migration.

A finite-difference method of 3-D shot-profile migration

In this migration method, each shot-gather is processed separately. Each shot-gather is mi-
grated into an illuminated volumilyx My Nz, smaller than the whole image volume, but big-

ger than the simple vertical prolongation of the area covered by the shot-array. The shot-profile
migration is very similar to a zero-offset migration done twice into the same illuminated vol-
ume. Twice, because for every depth step there is a source-wavelet extrapolation followed
by a receiver wavefield extrapolation, where each of these extrapolations is pretty similar to
a zero-offset extrapolation, both from the algorithmic and the data point of wiéNPUT =

Ns* (No * [MxMy])

All shot-gathers are processed independently, and for a given shot-gather each frequency slice
may be processed separatelyMEMORY = Ngx (N, x[Mx My]) + output + velocity modeé
CPUCOST =K% Ns*(Nw* Nz *[MX My]) with typically: Mx ~ My ~ 102 , Ng~ 2.5% 104,

Ng ~ 5% 10°.
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Performance ratio with respect to 3-D post-stack migration

The following performance ratio are the aforementioned memory requirements and CPU costs
compared to their 3-D post-stack equivalentsIEMORY: Ns* (MxMy) / (Nx Ny) &~ Ng=*

102 ¢ CPU COST:E—';’  Ns* (Mx My) / (Nx Ny) ~ % % 2.5% 102 The memory and cost ratios
(102 and 1¢) become more favorable than in the case of SG migratiorf (aihdﬁ—i *10%
respectively). Undoubtedly, each shot-gather would fit in memory. But still, as a matter of
total cost, this method is three orders of magnitude beyond feasibility. Another negative factor
is that an individual shot-migrated image is a very bad partial image, with many edge effects
and illumination artifacts, thus hard to interpret and nearly useless. The artifacts can generally
be suppressed by stacking a sufficient numbers of partial images, but to do so one needs to
migrate as much as one-fourth of the total shots of the survey. One-fourth of the total survey
is not an affordable subset to produce a first “cheap” legible partial image.

3-D PLANE-WAVE MIGRATION

The decomposition of seismic data into plane-wave or common-angle dataset, by such op-
erations as slant-stack or Tau-P transform, is frequent if not standard practice. In three di-

mensions, some research is done on Tau-P migrations, but more publicised are plane-wave
and areal-source migrations in the frequency-space domain. Areal-source migration is closely
related to plane-wave migration.

Three dimensional plane-wave migration in the frequency-space domain

The interest in plane-wave migration is that, for each plane wave, the data volume is equivalent
to a zero-offset data volume. Consequently, with regard to memory and space, there is no
doubt that one plane-wave migration would fit in the machine. Because of the similarity of
volume, and the intrinsic parallelism between plane-wave and zero-offset algorithms, the cost
of one plane-wave migration is almost the same as the cost of the post-stack migration with
equivalent implementation. Qualitatively, a plane-wave experiment provides a fairly regular
illumination of the subsurface. The migration of one plane wave yields a generally coherent,
legible, and artifact-free image of the subsurface, very similar in that respect to a zero-offset
image. Except for eventual signal-to-noise ratio problems, it is quite an acceptable partial
image. But a few important points are to be clarified. The extra cost of plane-wave synthesis
has to be assessed. It is difficult and debatable to evaluate the number of plane waves that
would be needed to produce a satisfactory final output migrated image. The range is from
20, for a minimalist selection of dip and azimuth in three dimensions, to more than 100, for
regular illumination, though the figures are debatable.

e INPUT = Npw * (N, *[NxNy]) « MEMORY = Npw * (N, *[Nx Ny]) + output + ve-
locity modele CPU COST =K1 * Npw * (N, * Nz % [Nx Ny]) + plane-wave synthesis with
typically Npyw ~ 20— 100
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Performance ratio with respect to 3-D post-stack migration

The performance ratio reduces to the number of plane waves need¢#@MORY: Npy ~

20— 100 ¢ CPU COST:Npw &~ 20— 100 (without counting plane-wave synthesis) Given

the number of plane waves | deemed necessary, the feasibility diagnosis looks good; memory
space is not a problem, and the CPU cost is only two orders of magnitude beyond the reference
threshold. Nevertheless, this method is not feasible in the near future because of the cost
of plane-wave synthesis, and the enormous shuffling of data it involves. Unfortunately, the
synthesis of one plane wave requires browsing all the input prestack data. Since huge amounts
of data should not be accessed repetitively, the procedure is impractical.

3-D COMMON-OFFSET AND COMMON AZIMUTH MIGRATION

With common-offset migration, one is normally entering the world of the Kirchhoff migra-
tion. So far, common-offset migration has been only possible with Kirchhoff type implemen-
tation. Nevertheless, some research is done on frequency-wavenumber implementations of
common-offset migration, (Popovici et al., 1994), and common-azimuth migration, (Biondi
and Palacharla, 1994). In this section, | discuss the data aspects of these potential frequency-
wavenumber implementations. The Kirchhoff implementations are discussed further on in this
paper.

Common-offset gathers

The common-offset sorting of data has the advantage that it is natural: unlike a plane-wave
gather, a common-offset gather exists in the input data. Creating a common-offset gather is
just a matter of sorting, and it is actually frequently done in standard processing. Another
interesting feature is that common-offset data are pretty much comparable to zero-offset or
post-stack data, in terms of size and spatial extension. That is to say, first, a common-offset
migration should be no more expensive than a post-stack migration, and second, a constant
offset migrated section is the best possible partial migration (even with respect to plane-wave
migration, and a fortiori with respect to shot-profile migration). The reason is that a common-
offset gather ensures a fairly good regular illumination of the subsurface. Generally, except for
signal-to-noise ratio, a constant offset migrated image exhibits few artifacts and looks much
like the final stacked image. The concept of offset, and common-offset sorting, is straightfor-
ward in two dimensions, but in three dimensions it needs to be clarified. The 3-D offset has in
fact two dimensions: 1) the radius or absolute offset, i.e. the absolute shot-receiver distance,
and, 2) the azimuth of the shot-receiver direction. For simplicity, | designate as common-
offset data, data that have same absolute offset and same azimuth. With regard to data volume,
a common-offset gather is comparable to a zero-offset or post-stack dataset.
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Non-Kirchhoff 3-D common-offset migration

As already mentioned, the Kirchhoff implementations are discussed further in this paper. The
figures | present here are for a purely hypothetical F-X implementation, where the fictitious
common-offset migration would be “fold” times a zero-offset migration, in terms of volume
and coste INPUT = fold Ny * [ Nx Ny],

where “fold” is the number of traces per bin, a bin being defined by a

doublet (absolute offset, azimuthy MEMORY = fold «N; x[Nx Ny] + image + velocity
modele CPU COST K % Ny Np* (fOld *[NZ * Nx Ny])

whereN, is the number of azimuth$\;, is the number of absolute offsets, aNgiN,«fold is

of the order of the total number of tracBigNy. | have no figure estimate fd¥, or Np.

Performance ratio: 3-D common-offset and 3-D post-stack migrations

The figures are for a purely hypothetical F-X implementation, and thus they are only specula-
tive. e MEMORY=fold ~ 1 (number of traces per offset, per azimutgPU COST=N, * Ny,

, the number of azimuths and offsets in which the prestack data has been redistributed, | have
no figure estimate.

Non-Kirchhoff common azimuth migration

Common azimuth migration is very closely related to the previously described common-offset
migration. As discussed in the preceding section, a common-offset gather is made of traces
having both the same common absolute offset and the same common azimuth. A common-
azimuth subset of data encompasses all absolute offsets for a given azimuth. For example, the
subset can be composed of parallel 2-D acquisition lines. Thus a common-azimuth migration
is the generalisation of the migration of a 2-D acquisition line in a 3-D volume. In the case of
a mono-streamer marine acquisition, with no feathering of the cable, the whole survey is one
common-azimuth gather. In this case, the common-azimuth migration suffices for the entire
prestack migration. Here are two reasons for separating common-azimuth migration from
common-offset migration. One is that common-azimuth migration seems no longer to be an
exclusive Kirchhoff fiefdom: a companion paper, (Biondi and Palacharla, 1994), describes a
possible common-azimuth migration with both Stolt and phase-shift algorithms. Secondly,
common-azimuth migration produces a highly acceptable partial image: regular illumination,
high fold, and relative insensitivity to azimuthal anisotropy of velocities. The following figures
are tentative estimates for a F-K or F-X implementati@™NPUT = Np,* fold «N,, % [ Nx Ny],

where “fold” is the number of traces per bin, a bin being defined

by a doublet (absolute offset, azimuth)MEMORY = Nj* fold %N, % [NxNy] + image +
velocity model.e CPU COST K x N #[Np % (Nz % Nx Ny)],

whereN,, is the total number of azimuth®l;, is the number of absolute offsets per azimuth.

N * Np is about the number of input tracisNg.
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Performance ratio: 3-D common-azimuth and 3-D post-stack migrations

e MEMORY: Npx fold & 10°? ¢ CPU COST:N,, * Ny ~ 10°?

3-D KIRCHHOFF PRESTACK MIGRATION

From the point of view of data-management, all Kirchhoff methods are identical: they can
have any subset in input or in output.

A Kirchhoff migration is a trace by trace migration

A Kirchhoff migration can accept as input any subset of data, and as output any local or global
target image. It operates truly trace by trace, thus allowing common-offset or common-shot
migration. This latter implementation is the most frequent; it is the Kirchhoff version of the
finite-difference shot-profile migration described earlier in this paper. The output volume is
the same, but the handling of input data is different. As with finite-difference shot-profile
migration, the output can be limited to the subsurface volume actually illuminated by the con-
sidered shot. In the Kirchhoff implementation, each trace of the shot-gather is “exploded” over
the image volume, according to pre-computed traveltimes or Green’s funcadhRUT =
NsNgNt,

no more and no fewer than the total number of traces of the suw&8EMORY = ad hoc
number of traces + image + traveltime tables,

we can process as many traces at a time as we want, starting fromec@BU COST =

K3 NsNg * [Nz * (Mx My)] + traveltime computation.

The coefficientKs is the algorithm factor of Kirchhoff methods. The number of time samples
per input traceN; the number of time samples per input trace does not appear in the compu-
tation cost. In Kirchhoff methods, the computation cost is just proportional to the number of
input traces, times the volume of the output image.

Performance ratio with respect to 3-D post-stack migration

Due to the very different features of Kirchhoff and finite-difference migration, a performance
ratio with respect to the reference 3-D post-stack migration is not easy to quaniifizM-

ORY:

(1 trace + 1 traveltime table)

to compare to

(1 frequency slice + 1 velocity cube).

The ratio is about 10%. @ CPU COST:2 % NsNg # (MxMy) / (NxNy) ~ 2 % 1.5% 10%,

not accounting for traveltime computation.
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COMPARATIVE FEATURES OF KIRCHHOFF AND OTHER APPROACHES

Kirchhoff and other approaches have very different nature and characteristic. It is a fact to be
taken seriously into consideration in this comparative study. The differences are in the “in-

visible” auxiliary processing, often taken for granted, and in the factors affecting the memory

requirements and the cost.

Auxiliary processing

The auxiliary processings are prerequisites to the migration process, assumed done before-
hand, like Fourier transform, plane-wave synthesis or any sorting of data. It is important to
keep in mind that most if not all migration methods involve some side processing, and the
overhead costs incurred may not be negligible. Kirchhoff migrations require a prior travel-
time or Green’s function computation, and all frequency-space migrations require a previous
Fourier transform of the input data (several Fourier transforms for the frequency-wavenumber
algorithms).

Minimum memory requirement

This section compares now the absolute minimum working volumes of Kirchhoff and frequency-
space migration.

* The minimum volume for a prestack Kirchhoff migration comprises

a source+receiver traveltime tableNs « Mx My ~ 5x 10°,

the illuminated image volume 3Nz x 10)s« My My ~ 5% 10/,
e atrace =N; ~ 10°.

Total ~ 5% 10" samples.

* The minimum volume for a frequency-space migration is

e afrequency slice for,
zero-offset or plane-wave migrationNx Ny ~ 10,
SG migration =Nx Ny % nxny ~ 10°,
shot-profile migration My My ~ 10%,

e plus a velocity model
for zero-offset, plane-wave and SG migrationNs Ny Nz ~ 107,
for shot-profile migration sMx My Nz ~ 10°.

e Total~ 10° to 1P samples, from shot-profile to SG migration.
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Factors affecting the cost

Thie section considers some other factors that affect the cost of the Kirchhoff implementations
and the others.

* Cost of Kirchhoff migration:

— The cost of Kirchhoff migration is proportional to the number of input traces,
but does not directly depend on their length. It is proportional to the number of
imaging steps in depth.

— The cost of the associated Green’s function (or traveltime) computation is pro-
portional to the number of surface locations and to the size of the computational
volume. The average size of this volume is proportional to the maximum depth of
the image. The size of this volume depends on a number of grid steps in depth,
these grid steps are usually coarser than the final imaging step.

* Cost of finite-difference migration:
— The cost of finite-difference migration tends to be proportional to the number of

extrapolation steps rather than the number of imaging step.

— The cost is proportional to the number of theoretical traces in a computation space;
this number is higher than the number of real traces.

— The cost is proportional to the length of the traces, through a time-to-frequency
Fourier transform.

SUMMARY OF NORMALIZED PERFORMANCES

This section summarizes the performance of each of the migration strategies reviewed, with
respect to the performances of 3-D post-stack finite-difference migration. The higher the fig-
ures, the less feasible the method.
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Input computational volume

The input computational volume may be bigger than the actual data volume from the field,
especially when a regular computation grid has to be filled with many zeroes.

INPUT VOLUME
Migration method formula quantity ratio
Post-stack reference N[ Nx Ny] 10° 1
SG finite-difference |  N,[Nx Ny *ngny] 1012 10°
Shot-profile FD Nss Ny[MxMy] | 2.5%10M | 2.5%1(?
Plane-wave FD Npw * N[ Nx Ny] ~ 1011 107
Common-offset F-K |  fold «N,[Nx Ny] ~ 1010 12.5
Common-azimuth F-K Npx fold «N,[NxNy] | =~ 10%° 12.5
Kirchhoff NsNgN; ~ 1010 12.5

Memory requirements

In studying the management of data, we are interested in the minimum possible memory space
required in the machine for the migration process to work fine. This ideal minimum volume
corresponds to the memory space required for migrating the smallest subset of data that the
migration algorithm can process independently.
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MEMORY REQUIREMENT

Migration method total minimum ratio

Post-stack reference N[ Nx Ny] Nx Ny 1

SG finite-difference | N,[Nx Ny % nyny] Nx Ny *nyny, 10

Shot-profile FD Ns* N,[Mx My] Myx My 102

Plane-wave FD Npw * Nw[Nx Ny] Nx Ny 1

Common-offset F-K | N, Np* fold x[Nx Ny] | fold *s[NxNy] | 1-10?

Common-azimuth F-K Ng [ Np % Nx Ny] [Nps« NxNy] | 102?

Kirchhoff Ng*MxMyNZ Mx My Nz A

Computational cost

The computation cost of the whole 3-D survey is checked with respect to the 3-D post mi-
gration chosen as a reference. Auxiliary processing such as plane-wave synthesis, Fourier
transform, traveltime and Green’s function computation, is not accounted for.

COMPUTATION COST

Migration method formula guantity ratio

Post-stack reference K1 N, s Nz[ Nx Ny] Kq* 101 1

SG finite-difference | Kz N, % Nz[Nx Ny %nyny] K, 1014 % * (103 to 10%)

Shot-profile FD Ko Ng* Ny % Nz[MxMy] | Ko%2.5%103 %*2.5* 107

Plane-wave FD K2 Npw * N, % Nz[ Nx Ny] K, 103 ~ 20— 100
Common-offset F-K | Kj * Ny Np* fold %[ Nx Ny Nz] ? ?
Common-azimuth F-K  Kj % Ng * [ Np % Nx Ny Nz] ? ?

Kirchhoff K3 NsNg[Mx My Nz] K3 1.5% 10 %*1.5* 10°
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DISCUSSION

Having 3-D post-stack migration (finite-differences) as the basis for comparison, this study
outlines why SG migration is apparently “outcompeted” in the 3-D world. SG migration
works best when there is high fold and high redundancy of both shots and receivers at each
bin location. This is often the case in two dimensions, hence the popularity of 2-D SG mi-
gration. But it is rarely the case in three dimensions, for which finite-difference shot-profile
migration works as well and is cheaper. SG migration is thus outcompeted in terms of cost,
but also in terms of memory, because its working unit, a four-dimensional frequency slice, is
just too big. Shot-profile migration is not the only competitor. Many other migration strategies
allow for the processing of manageable subsets of input data, and are able to deliver accept-
able partial images. It will be important to follow the developments of plane-wave migration
and the eventual spectral domain version of common-offset or common-azimuth migration.
These methods, if they emerge, may combine the affordability and regular illumination of
common-offset migration, with the proper treatment of amplitudes and steep-dips of the FK
or phase-shift migrations. Today, the main contenders remain the Kirchhoff implementations.
They allow for almost any subsetting of input data or output data, and this versatility is their
strength. Nevertheless, Kirchhoff migrations are trace-by-trace, image-point by image-point
methods, ignoring the economy of scale obtained by the downward continuation methods.
The downward continuation methods operate on very huge frequency slices, but each slice is
recursively transported layer per layer: only the Green’s functions from a layer to the next
layer are (implicitly) involved. The Kirchhoff methods need to know the Green’s functions
between each point at the surface (the shot and receiver locations) and all the points of the
output volume (the migrated image). Kirchhoff implementations rely on the computation of
3-D Green'’s functions. This adds an extra cost to the migration, and creates very huge auxil-
iary data volume, adding to the memory burden. The crucial considerations are on one hand,
to minimize the access and manipulation of the input data; on the other hand, to optimize the
creation and management of auxiliary data (Green'’s functions for instance). On the first point,
to minimize the manipulation of input data, shot-profile, common-offset, common-azimuth or
any Kirchhoff method does fine. Plane-wave migration is nearly anti-optimal as it requires
multiple access and manipulation of data for plane-wave synthesis. All global methods re-
lated to SG migration are infeasible. Regarding the second point, volume of auxiliary data, all
Kirchhoff methods are at a disadvantage. No method is good on both points. The question is,
which factor prevails, the size of input data or the size of the traveltime tables? According to
the figures proposed at the beginning of the paper, the traveltime tables may eventually, for an
entire survey, be greater than the seismic data volume. If so, this should preclude the use of
Kirchhoff methods, at least for an entire 3-D survey. However, one has to consider that only
a small portion of the whole traveltime volume may need to exist at a time. Local traveltime
subsets may be created and erased in turn. One also has to consider that these traveltime sub-
sets may exist only locally within the machine or on the disk; the problem of hardware input
and output may not be as critical as for the seismic data.



SEP-80 Why Kirchhoff for 3-D prestack 17

CONCLUSIONS

In the 3-D prestack migration world, the critical factors are the total cost, the computer feasi-
bility, and the parsimonious manipulation of data. SG migration is outcompeted on all these
points. Plane-wave migration is definitely not parsimonious in data manipulation. This leaves
as contenders the strategies dealing with natural data subsets: common-shot, common-offset,
gathers and so on. All these common-something migration methods exist in Kirchhoff im-
plementations. Except for shot-profile migration, the respective non-Kirchhoff versions are
still at the research stage. A simple kinematic Kirchhoff migration is unbeatable in manip-
ulating input data, and it is probably cheap compared to the corresponding frequency-space
or frequency wave-number methods, if they exist at all. Kirchhoff methods finally evade the
guestion of the total cost by being target-oriented. At present, they remain the foremost and
nearly the only choice.
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