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Constraints on minimum velocity variance in seismic traveltime
tomography

James G. Berryman1

ABSTRACT

Traveltime data together with known spacing between sources and receivers for seismic
transmission tomography can be used to determine rigorous constraints on the minimum
and maximum wave speeds in the propagating medium. These constraints lead to a new
minimum variance criterionon inversion algorithms. These results do not improve the ve-
locity reconstructions directly, but provide rigorous and easily computed figures of merit
to help evaluate the difficulty of the reconstruction problem and the performance of to-
mographic inversion codes. Specifically, these criteria may be used during preprocessing
to decide whether linear or nonlinear traveltime tomography methods are required for
analyzing a given data set, or during postprocessing to determine whether regularization
methods used to constrain the maximum model variance were overly restrictive.

INTRODUCTION

The degree of difficulty associated with inverting seismic traveltime data for wave speed dis-
tribution is largely determined by the contrasts present in the propagating medium. If velocity
contrasts are small, seismic waves in a general refracting medium are only weakly bent and
straight ray tomographic algorithms will give adequate results (Dines and Lytle, 1979; Lytle
and Dines, 1980). If the velocity contrasts are large, then seismic waves are strongly refracted,
implying that nonlinear tomography algorithms are required to invert such data. On the other
hand, if the measurement configuration of sources and receivers has a severely limited range
of view angles (as is often the case in crosswell geotomography), then the reconstruction will
not place enough natural constraints (i.e., those derived from data) on the velocity model.
In this situation, it is commonly observed that raw reconstructions (prior to regularization)
produce wildly oscillating velocity distributions [see Berryman (1990)]. The large velocity
fluctuations observed in raw reconstructions are often consequences of limited view angles in
the measurement configuration. These velocity fluctuations are most often successfully con-
trolled by applying some type of “regularization method,” which in almost all cases amounts
to placing either global or local constraints on the range of variation of the model velocities.
The actual constraints are usually only implicitly applied through some objective function
that is minimized while the differences in the predicted versus measured traveltimes are also
minimized. This process leads to a tradeoff between agreement with the traveltime data and
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consistency with either some smoothing condition or some other velocity variance constraint.
When no other information is available, it seems reasonable to apply regularization conditions
as needed to prevent reconstructions from producing absurd results (Scaleset al., 1990; Peng
et al., 1993). However, if additional information is available in the data itself, then it seems
clearly preferable (since no bias is introduced) to make use of all the constraints that may be
inferred directly from the databeforeemploying anyad hocconstraints. The author’s paper
on nonlinear traveltime tomography (Berryman, 1990) shows how Fermat’s principle may be
used to supply one important type of rigorous global constraint on the nonlinear inversion pro-
cess. In the present paper, another type of constraint is derived based just on the geometry of
the measurement configuration. This approach leads to two constraints that provide informa-
tion about the absolute range of variation within the velocity field. And, because of the general
nature of my argument, it actually provides a rigorous statement about the seismic speeds in
the earth, not just in some special choice of model parametrization. I will call the total range
of variation in the velocity fieldthe velocity varianceor the model variance, but there is no
statistical information implied or contained in these constraints. The constraints found in the
next section show that the velocity variance must be at least as large as the apparent veloc-
ity variance for straight rays from the actual sources to the actual receiver positions. Such
constraints are useful for deciding whether nonlinear tomography techniques are required in
the inversion, or whether the choice of parameters used in particular regularization methods
overly restrict the range of variation of the reconstructed model.

CONSTRAINTS ON MINIMUM VELOCITY VARIANCE

If the traveltime from a source atExs to a receiver atExr is t(Exs, Exr ), then Fermat’s principle of
least time2 states that

t(Exs, Exr ) = min
{paths}

∫
path(Exs,Exr )

s(Ex)dl path
=

∫
M(Exs,Exr )

s(Ex)dlM , (1)

wheres(Ex) is the slowness (inverse of wave speed) throughout the propagating medium, and
M(Exs, Exr ) is a minimizing path for the source/receiver pair (Exs, Exr ). My arguments are phrased
most easily in terms of the wave slowness, but conversion to statements about wave velocity
is easily accomplished at the end of these calculations. LetL(Exs, Exr ) represent the straight
line path from source to receiver andd(Exs, Exr ) the Euclidean distance fromExs to Exr . Then, it
follows that, if I perform the line integral in (1) along the straight-line path, the result is an
upper bound on the measured traveltime, since

t(Exs, Exr ) =

∫
M(Exs,Exr )

s(Ex)dlM
≤

∫
L(Exs,Exr )

s(Ex)dlL . (2)

Furthermore, ifsmax ≥ s(Ex) is the largest value of slowness anywhere in the model, I have∫
L(Exs,Exr )

s(Ex)dlL
≤ smax

∫
L(Exs,Exr )

dlL
= smaxd(Exs, Exr ), (3)

2Fermat’s principle is actually the weaker condition that the traveltime integral isstationarywith respect
to variations in the ray path. But, for traveltime inversion using measured first arrivals, it follows that the
traveltimes must actually be minima.
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since fixing the path and increasing all slownesses along the path up to the maximum value
clearly produces an upper bound. Combining equations (2) and (3), I find

smax ≥
t(Exs, Exr )

d(Exs, Exr )
. (4)

Inequality (4) is true for all source/receiver pairs. As I consider all available data (i.e., all
source/receiver pairs), I discover that the most restrictive information in (4) is provided by the
largest right hand side. I give this most restrictive value the nameMin(smax) and summarize
this result in the equation

smax ≥ Min(smax) ≡ max
{(Exs,Exr )}

t(Exs, Exr )

d(Exs, Exr )
, (5)

stating that the maximum value of slowness is bounded below byMin(smax). Now I consider
(1) again in order to obtain a similar constraint onsmin ≤ s(Ex), the minimum value of slowness
in the propagating medium. I find easily that∫

M(Exs,Exr )
s(Ex)dlM

≥ smin

∫
M(Exs,Exr )

dlM , (6)

since fixing the path and reducing all slownesses along that path to the minimum value pro-
duces a lower bound. Furthermore, the path length along the minimizing path clearly satisfies∫

M
dlM

≥

∫
L

dlL
= d(Exs, Exr ), (7)

since the straight line path has minimum path length. Combining equations (6) and (7), I find

t(Exs, Exr ) ≥ smind(Exs, Exr ) (8)

for every source/receiver pair. Therefore, the minimum value of slowness is bounded above
by

smin ≤ Max(smin) ≡ min
{(Exs,Exr )}

t(Exs, Exr )

d(Exs, Exr )
. (9)

I could have phrased these bounds in terms of the model velocity distributionv(Ex) = 1/s(Ex)
using the same approach. The conditions (5) and (9) are constraints on the minimum (not
the maximum) variance of the slowness model, showing that fluctuations in model slowness
mustat leastspan the range [Max(smin), Min(smax)] and that the minimum and maximum of
slowness must fall on the boundary or outside this range, so

smin ≤ Max(smin) ≤ Min(smax) ≤ smax. (10)

Equivalently the velocity minimum and maximum must fall on the boundary or outside the
corresponding range

vmin ≤ Max(vmin) = 1/Min(smax) ≤ 1/Max(smin) = Min(vmax) ≤ vmax. (11)



4 Berryman SEP–80

It is important to emphasize that these constraints do not help in solving the inversion problem
directly. (To solve the inverse problem, it would have been more helpful to obtain bounds
on themaximum variationof the velocity instead, but unfortunately theminimum variation
is what I can bound.) Rather they first provide a means (during preprocessing) of testing
whether nonlinear traveltime tomography methods are required in the inversion. If I find that
the contrast ratio

R =
Min(vmax)− Max(vmin)

Max(vmin)
(12)

is greater than about 20%, then I expect bent rays to play an important role in the inversion
for velocities (Dines & Lytle, 1979; Lytle & Dines, 1980). After completing some phase of
an iterative model reconstruction, these constraints can then be applied as an intermediate or
postprocessing step to check whether regularization methods employed to limit variance of
the final velocity model were overly restrictive.

EXAMPLES

Synthetic examples

For purposes of testing algorithms, it is generally good practice to construct some represen-
tative synthetic models spanning the range of anticipated behavior. A suite of models was
constructed in Berryman (1990) for purposes of testing reconstruction algorithms. The same
models will be used here to test the minimum variance constraints. All the models in the suite
have 16× 8 square cells in 2D, while using 320 rays — including 256 rays (16 sources×

16 receivers) from left to right (intended to mimic borehole-to-borehole data) and 64 rays (8
sources× 8 receivers) from top to bottom (surface-to-bottom data). The traveltime data were
generated with a bending method using the Nelder-Mead simplex search routine (Prothero
et al., 1988; Nelder and Mead, 1965). Three slowness models were considered. Each has a
localized low speed anomaly near the top and a high speed anomaly near the bottom. The
background velocity is normalized to unity (v ≡ 1). The first example has 20% anomalies;
the second has 50% anomalies; the third 100% anomalies. The constraints are then computed
from the synthetic traveltime data and the known distances from the sources to the receivers.
The results are summarized in TABLE 1. I find that the constraints are indeed bounds as ex-
pected, but for these models they prove to be somewhat conservative estimates of the true
range of the velocity variations. TABLE 1. Synthetic examples based on the doublecross

models in Berryman (1990).

Model vmin Max(vmin) Min(vmax) vmax

# 1 0.833 0.928 1.091 1.200

# 2 0.667 0.861 1.200 1.500

# 3 0.500 0.773 1.333 2.000
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Figure 1: Histogram of the number of occurrences of velocity values within a specified range
of values for a representative subset of the Friendswood data set (Chenet al., 1990).

Field example

As an example using field data, I consider the Friendswood data set acquired by Chenet al.
(1990) at Exxon. Using a representative subset of the measured traveltime data for 512 of the
known source/receiver locations, I find (without actually inverting the data) the distribution of
the velocity ratiod/t given in Figure 1. These data were collected near Friendswood, Texas,
and included both crosswell data between two 304.8 m (1000 ft) cased boreholes separated by
182.9 m (600 ft), and vertical seismic profiling data with sources in one of the boreholes and
receivers at the surface. Additional data were collected using surface sources and downhole
receivers; however, we have not used this part of the data here because of some uncertainties
in the locations of the surface sources. Figure 1 shows that the minimum variance for this
model should lie in the range 1.4–2.0 km/s (4600–6400 ft/s). Published reconstructions of the
data obtained by Chenet al. (1990), Zhouet al. (1993), and also unpublished reconstructions
by the author using the methods outlined in Berryman (1990) show the range of velocities to
be 1.2–2.3 km/s (4000–7500 ft/s) for this region, consistent with the predictions inferred from
Figure 1. The Friendswood example shows clearly that, since the minimum variance in the
slowness model for the data lies in the range 1.4–2.0 km/s (4600–6400 ft/s) — correspond-
ing to about 40% minimum contrast, inversion of this data setrequiresnonlinear traveltime
tomography methods. For this particular data set, wave speed variance information could also
have been obtained from acoustic log data available at the Friendswood location. However,
it is still useful to know that this wave speed variance information is also present in the trav-
eltime data itself, since it can happen in practice that such acoustic log data are not always
readily available.
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DISCUSSION

The analysis presented so far has ignored a number of potential complications. Two commonly
noted issues in tomographic reconstructions are: (1) two-dimensional analysis versus three-
dimensional earth and (2) isotropic analysis versus anisotropic earth. The simplicity of the
present approach has the advantage that these two complications do not affect my results —
straight lines are still straight lines in three-dimensions while minimum and maximum speeds
are still minimum and maximum speeds in anisotropic media. Thus, these cases are actually
implicitly included in the analysis. Similarly, multipathing is also included since the straight
line path is still the shortest path between source and receiver, regardless of the presence of
alternative paths. However, noise in the traveltime data can have more serious effects on our
arguments. Two types of noise should be distinguished: (1) simple picking errors due to
discrete time sampling and (2) more subtle errors due to picking first energetic arrivals rather
than true first arrivals (which may be too low in amplitude to pick). Simple picking errors
(assumed to be on the order of the time sample rate of the recorded seismic data) affects
the calculated values by at most a few percent (except for cases with very high velocities or
very small well spacing). When averaged over all view angles, I should still get reasonable
estimates of the minimum variance of the velocities using these constraints. On the other hand,
if first energetic arrivals have been picked rather than first arrivals, then a systematic bias is
introduced, shifting traveltimes to higher values and velocities to lower values. But, if these
errors are at least reasonably consistent, I should still obtain a valid estimate of therelative
rangeof the velocity variance, even though the absolute range may be significantly in error.
Such difficulties should not decrease the usefulness of the proposed figures of merit. It is only
the relative range of variance that is important for deciding whether to use nonlinear inversion
techniques. Similarly, in many regularization methods, it is only the relative rather than the
absolute variance that is constrained.

CONCLUSIONS

On the one hand, large velocity contrasts in the propagating medium arethe causeof nonlin-
earity in the inversion. On the other hand, large velocity contrasts in the reconstructed model
can bean effectof limited view angles available in the data, when inadequate regularization
has been applied in the inversion scheme. In either case, the velocity variance is a key char-
acteristic of the model, so any information I can obtain to quantify this factor should prove
useful. I have shown that rigorous constraints on the range of variation in the seismic ve-
locities in the earth may be obtained from traveltime data and source/receiver geometry, with
no need for extensive processing of the data using a tomographic reconstruction code. These
constraints determine theminimumvariance in model wave speeds that may be expected if a
reconstruction is performed. Furthermore, these results provide handy clues to the necessity
(or lack of necessity) of using nonlinear reconstruction codes to perform the data inversion.
The results presented provide rigorous and easily computed figures of meritbased only on
the datato help evaluate the difficulty of the reconstruction problem and the performance of
tomographic inversion codes.
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