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Toward an exact adjoint:
semicircle versus hyperbola

Jun Jit

ABSTRACT

The correctness of an adjoint operator entirely depends on the correctness of the|corre-
sponding forward modeling operator. In migration, the input-oriented algorithm implies
more correct forward modeling than the output-oriented algorithm does. One big dif-
ference between the two algorithms is the domain of interpolation, and this is one of
the major sources of migration artifacts. Whereas the input-oriented algorithm requires
interpolation in the model space, the output-oriented algorithm requires interpolation in
the data space. For Kirchhoff migration, the method of semicircle superposition and the
method of hyperbola summation correspond to the input-oriented and output-oriented al-
gorithms, respectively. The same analogy can be applied to Stolt migration. Levin (1994)
suggested the input-oriented algorithm that is the counterpart to the output-oriented al-
gorithm suggested by the SEP “in-time" group (Popovici et al., 1993; Lin et al.,1993;
Blondel and Muir, 1993)

INTRODUCTION

An adjoint operator to a forward modeling operator is often a good processing operator for
estimating approximate model parameters from data that are assumed to follow the presumed
forward modeling operator (Claerbout, 1992). Two of the most widely used approaches for
finding the adjoint operator can be explained in three steps as follows:

e Approach 1

1. Formulate the forward operator in the continuous sense.
2. Write down the adjoint operator to the continuous forward operator.

3. Discretize the continuous adjoint operator.
e Approach 2

1. Formulate the forward operator in the continuous sense.

2. Discretize the continuous forward operator.

lemail: not available
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3. Take the Hermitian adjoint of this discrete operator.

The difference between the adjoint operators acquired by theese two approaches is a weighting
factor. The adjoint operator obtained by the first approach has a weighting factor that is the
Jacobian, but the one found by the second approach does not have it. The Jacobian appears
while finding the adjoint operator in the continuous sense. With each approach, there are two
types of adjoint operators that depends on the discretizing space. While the discretization of
an operator along the data space results in an algorithm that requires looping over the data
space, the discretization of an operator along the model space results in an algorithm that
requires looping over model space. An example is hyperbolic summation versus semicircular
superposition in the Kirchhoff migration. Even though the discretization of an operator along
the data space is more correct than the other approach in simulating the real experiment, we are
used to discretizing along the model space because of the ease of numerical implementation.
Claerbout has reported, however, some advantages of the algorithm that uses looping over
model space in NMO (Claebout, 1990) and velocity scanning (Claebout, 1989). This paper
compares the two algorithms that require looping over the data space and over the model
space, in terms of the implied forward modeling operator and tests both algorithms with and
without Jacobian in Kirchhoff migration and Stolt migration

FORWARD MODELING

Even though the model space of the real wonfgl,is continuous space, the dath,acquired

are usually regularly discretized samples. In order to formulate a forward modeling operator
that relates the continuous model space and the discrete data space, let us assGniee that
the operator which relates continuous model space into continuous data space, &d that
is a sampling operator. Then the entire forward modeling operatocan be obtained by
cascading both operators, as follows:

d=Lm =SCm. ()

Since the continuous operat@@, cannot be expressed with an explicit matrix, | have used
Figure 1 to explain this operation in terms of an abstract matrix. In Figure 1 the dotted line
represents the discrete data space, and the solid line represents the continuous model space.
There are two possible adjoint operators to the forward operator shown in equation (1). One
case is when we assume the forward operator to be two cascaded operatorsSOchtaan

the adjoint operator has the form lik@'ST. Here,S' is a simple transposed matrix &f

butCT is not a simple transposed matrix because an adjoint operator in a continuous domain
cannot be straightforwardly defined by transposing a corresponding matrix (we simply do not
have the matrix). Instead another equivalent property can be used for dot-product definition
(Claerbout, 1992); Jedlicka (1989) suggested the Euclidean norms. If w@ findth respect

to the Euclidean norms, the Jacobian appears in the process of variable substitution. The
other case is when we assume the forward operator to be a whole operator ken the
adjoint operator has a form like™. Even though this adjoint cannot be shown in an explicit
matrix form because the model space is continuous (Figure 1), we can implement this easily
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Figure 1: The shape of the forward modelling operatoeSC). The dotted line represents
the discrete data space, and the solid line represents the continuous model space. Notice that

the operatoL is continuous in the model space and discrete in the data spaae-frd-oprt
INR]

by looping over the data space or, in other words, using the input-oriented algorithm. Since
the operator§ andC are not commutative,

SC#£CS,

the order of the two operators is very important in defining the forward modeling operator.
Defining our operatol,., to have the form o€S instead ofSC, results in a different forward
modeling operator,

d=Lm =CSm. (2)

This equation implies that the model space is sampled before we apply the forward operator,
which is not correct. Figure 2 explains this operation in terms of an abstract matrix. Again we
have two possible adjoint operators to the forward operator shown in equation (2), which can
be derived the same way as | explained before.

Even though the continuous forward operators implied by both equations (1) and (2) are
same, the algorithms for corresponding adjoint operators are different. Equation (1) leads
us to the input-oriented algorithm, equation (2) to the output-oriented algorithm. In SEP-65
Claerbout (1989) reported differences between the two algorithms in velocity scanning. In the
following two sections, | compare the two formulations for the Kirchhoff and Stolt migrations.

KIRCHHOFF MODELING AND MIGRATION

The simplest zero-offset Kirchhoff modeling and migration algorithm connects the data space
and the model space using the relation between travel time and distance
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Continuous data space Discrete model space

Figure 2: The shape of the forward modelling operatoe(CS). The dotted line repre-

sents the discrete model space, and the solid line represents the continuous data space. No-
tice that the operatoL is continuous in the data space and discrete in the model space.
jun1-frd-oprt-con[NR]

whereuv is velocity,t is time, andx andz are surface and depth, respectively. If we assume

the forward modeling has the form of equation (2), the corresponding Kirchhoff migration
turns out to be the hyperbolic summation algorithm, which is especially popular these days.
If we assume the forward modeling has the form of equation (1), however, the corresponding
Kirchhoff migration turns out to be the semicircle-superposition, which is the classical ap-
proach (Schneider, 1971). In the continuous formulation in both data and model spaces the
hyperbolic and semicircle approaches produce same results. In the real world, however, the
data space is discrete and the model space is also required to be discrete for the purpose of
representation. Thus, the hyperbolic and semicircle approaches differ because equation (3)
doesn't allow mapping from regularly discretized data space to model space and vice versa.
If we use the hyperbolic summation approach, the interpolation in the data space is required
because a point in the model space never produces a hyperbola that fits into a regular grid in
the data space. In contrast, if we use the semicircle-superposition approach, the interpolation
in the model space is required for the same reason as with the hyperbola approach. If we recall
the implied forward modeling operator, the semicircle approach seems to be the appropriate
one. However, because of the efficiency of the hyperbolic approach in computer implemen-
tation, there has been a tendency to ignore the semicircle approach. In order to investigate
the possible advantage of the semicircle approach, | tested it and compared the results with
those of the hyperbola approach. Figure 3 shows a model and synthesized data. The model
was generated using Claerbous®moid code with a fine sampling interval to avoid aliasing

in the model space, and the data were generated using Claerkiochslow algorithm. The
sampling interval of the model used is so small that we can assume the modeled data is very
close to the continuous situation. In order to simulate the discretized data along the surface,
| subsampled the data (Figure 3) with sampling interval two, five, and ten times larger than
the original one. First, the hyperbola summation was tested with and without the Jacobian for
these subsampled data; the results appear in Figure 4. In this case, the Jacobian does not seem
to be helpful at all. Next the semicircle-superposition algorithm was tested with and without
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Figure 3: Synthesized subsurface image using Claerbout’s Sigmoid (left) and modeled data
using Claerbout'&irchslow algorithm (right).

the Jacobian for the same subsampled data, and the results are shown in Figure 5. Again the
Jacobian does not seem to be helpful at all. The results from both approaches are quite similar
except for some artifacts in the image obtained by the hyperbolic summation. These artifacts
are concentrated mainly in the portion where high dip events are located in the model space,
which can be explained by the operator aliasing in the hyperbolic summation.

STOLT MODELING AND MIGRATION

The Stolt (1978) modeling and migration algorithm relates the data spectrum space and the
model spectrum space using the dispersion relation

w2

=G +K), @

wherew is temporal frequency ark} andk; are spatial wavenumbers.

In Stolt modeling and migration, unlike Kirchhoff methods, the interpolation is very im-
portant because the mapping from model and data is done in the spectrum domain. Recent SEP
articles ( Popovici et al., 1993; Lin et al., 1993; Blondel and Muir, 1993) report on the testing
of a Stolt migration and modeling method using the slow Fourier transform to reduce inter-
polation artifacts. Their algorithm implies the interpolation in the data space by slow Fourier
transform along the irregularly located which is related to the regularly sampledkin This
method assumes that the forward modeling has the form of equation (2), and the correspond-
ing Stolt migration turns out to be spectrum mapping following the hyperbolic equation. As
with the relation between the semicircle-superposition and hyperbolic-summation, there is an
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Figure 4: Migration results of Figure 3. The leftimages are the results of hyperbola summation
without the Jacobian; the right images are with the Jacobian. To migrate the subsampled data,
from the top every other, fifth, and tenth sample along the x direction is used.
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Figure 5: Migration results of Figure 3. The left images are the results of semicircle-
superposition without the Jacobian; the right images are with the Jacobian. To migrate the
subsampled data, from the top every other, fifth, and tenth sample along the x direction is
used.
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alternative to the slow Fourier transform along time axis. It is slow Fourier transform along
the depth axis, as suggested by Levin (1994). This implies that the forward modeling has the
form of equation (1), and the corresponding Stolt migration turns out to be spectrum mapping
following the semicircle equation. To show the spectrum mapping strategy in both approaches,
each point in the model and data spectra are mapped and shown in Figures 6 and 7, which also
contain impulse responses. The impulse responses indicate that the interpolation in the data
space shows fewer artifacts than the interpolation in the model space. However, the impulse
response sometimes hides the defects of the operator, which is the case in these examples. For
a more accurate comparison, the migration operators of the both approaches were tested on
the Sigmoid model of Figure 3; the results are shown in Figures 8 and 9. In these results,
similar patterns of artifacts appear, and generally the input-orient algorithm produces a better
image than the output-orient algorithm. Unlike the Kirchhoff case, in this case, the Jacobian
seems to help reduce the artifacts with both approaches (see Figures 8 and 9.)

CONCLUSIONS

The correctness of an adjoint operator depends entirely on the correctness of the corresponding
forward modeling operator. In migration, the input-oriented algorithm implies more correct
forward modeling than the output-oriented algorithm. One big difference between two algo-
rithms is the domain of interpolation, which is one of the major sources of migration artifacts.
The input-oriented algorithm requires interpolation in the model space, but the output-oriented
algorithm requires interpolation in the data space. In both algorithms, the Jacobian may or may
not appear according to the definition of the implied forward operators. The usefulness of the
existence of the Jacobian is not yet clear. The tests seem to indicate that the Jacobian helps in
Stolt migration but did not in Kirchhoff migration.
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Figure 6: Stolt modelling and imaging regularly sampled for wavenumber and irregularly
sampled for frequency.
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Figure 7: Stolt modelling and imaging regularly sampled for frequency and irregularly sam-
pled for wavenumber.
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Figure 8: Stolt imaging for the Sigmoid synthetic regularly sampled for wavenumber and
irregularly sampled for frequency. The left is without the Jacobian; the right is with the Jaco-
bian.
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Figure 9: Stolt imaging for the Sigmoid synthetic regularly sampled for frequency and irregu-
larly sampled for wavenumber. The left is without the Jacobian; the right is with the Jacobian.
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APPENDIX A

The definition of an adjoint operator in a continuous domain cannot be done straightforwardly
by transposing a corresponding matrix (we simply do not have the matrix). Instead another
equivalent property is used for definition:

(Cm,d) = (m,CTd) (A-1)

This is the equation that is used for the dot product tests (Claerbout, 1985) If we want to apply
an algorithm using Euclidean norms, then our operators should be adjoint with respect to the
Euclidean norms. The definition of the simplest Kirchhoff modeling opef@tisr

0 = [ /2=y x - y)dy (A2
y
Let us derive the adjoint operator :

(Cm, d)

/fd(t,x)dtdx/m( t202 — (x — y)2,x — y)dy (A-3)

X Jt y

= //fdtdxd)d(t,x)m(\/tzvz—(x—y)2,x—y) (A-4)
xJtJy

After substitutionz = /t2v2 — (x — y)? anddt = z/(tv?)d z, we obtain

Cm,d) = f/m(z,x—y)dydz/%d(—w,x)dx (A-5)
yJz X
/2 2
= /fm(z,y)dydz/ %d(—Z v+y Y —Xx)dx (A-6)
yJz X
= (m,CTd) (A-7)

Finally we have the Kirchhoff migration operat@r is

m@w=f5ﬂ¢f}fy—ww (A-8)
y



