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Reciprocity of tensor wavefields

Martin Karrenbach

ABSTRACT

If reciprocity principles are invoked in seismic data processing algorithms, one has to
make sure that those processes maintain reciprocity. | outline briefly the derivation of
reciprocity principles for elastic wave equations and show that discretized or approxi-
mated wave equations can lose symmetry properties and thus reciprocities. This |effect
is important if one is concernd about true-amplitude processes and if one needs to use
reciprocity arguments. | show an example of an elastic finite-difference approximation to
the wave equation that is not reciprocal, but can be made reciprocal by symmetrizing the
Green’s function kernel properly.

INTRODUCTION

Reciprocity principles in wave propagation problems are well known and mathematical as-
pects are detailed in Morse and Feshbach (1953) and with applications to seismic data in Aki
and Richards (1980). Those descriptions are based on a symmetry property of the Green’s fun-
tions for the underlying wave propagation operator. Full wave equation theory is the basis for
those investigations. Knopoff and Gangi (1959) and Gangi (1980) verify reciprocity principles

in measurements for seismic waves on the laboratory scale. Fenati and Rocca (1984) demon-
strate reciprocity in field data to a remarkable degree, even though their source and receiver
geometry/type were not exactly reciprocal. All these investigations have been concerned with
full dynamic reciprocity principles, not just traveltime, but full waveform reciprocity. Razavy
and Lenoachca (1986) have investigated the influence of analytical and numerical approxima-
tions on reciprocity principles, which becomes important when using approximate solutions
and reciprocity arguments together in a wave propagation problem. Based on these findings,
I will show that my particular finite-difference approximation to the elastic wave equations
maintains reciprocity and | will show two field data examples of 9 component data showing
reciprocity (or lack thereof).

lemail: not available
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WAVE EQUATIONS AND RECIPROCITY

Given a set of dynamic equations, which describe the propagation of a wave in some medium,
conservation principles lead to a reciprocal relation. Consider the set of dynamic equations
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in a volume V, wheray; are components of a displacement vec¥rare components of the

body force vector and;j are components of the stress tensor. The raised parenthéseis

cate various positions of the source. These equations describe the force balance of a medium,

without specifying the particular way in which stresses might be related to displacements. Itis

not necessary to assume any particular constitutive relation at this point. The force equations
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describe the distribution of boundary forcéson the enclosing surfac8;, when the body
force X" and X?) are applied while

ul=g"  uP=g? (4)

define the distribution of displacement vectgr®n the surfac&, when the same body forces
are applied. See Figure 1 for an illustration showing the state of the medium in the two cases.
The above equations are a set of equations that describe the physics of motion and boundary
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Figure 1. A medium with a cer-
tain volume V and surface S show-
ing two different locations at which
a body force is applied and the re-
sulting displacement is measured. On
the surface of the body, stresses and
displacments may develop or may
be specified as boundary conditions.

martinl-bett| [NR]

conditions of a wave propagation problem. The equations of motion (1) and (2) augmented by
a constitutive relationship can be generally written in terms of a linear differential opérator

Lu= X (5)

with appropriate boundary conditions (3) and (4). In further analysis | assume that initial accel-
eration and displacements are zero before some time and represent a causal wave propagation
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problem. Forming an inner product of the above equations uf?t)nand ui(l), respectively,
leads in the time domain to a general integral relation. This relation is often referred to as
Betti’s reciprocal theorem (Aki and Richards, 1980). It relates the work done in each of the
experiments.
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It is noteworthy that the dependency of the stress field on the displacement field does not enter
explicitly into this equation. In fact it is valid for a large variety of media (inhomogeneous,
discontinuous, elastic, anisotropic, etc.). The above integral relation can now be used to derive
special properties of the Green’s function. The definition of a Green’s function, is the solution
of the impulse repsonse problem

L G(X,t|&,7) = —478(X — £)8(t — 1) (6)

A patrticular case of this Green'’s function would be the elastic case with causal initial condi-

tions
2

0
8tZG‘ln = 0ind(X — S)S(t—‘c)+ (Cljkl 8X|Gkn) (7)
in the VolumeV, with initial conditions
0
G(x,tlg,7) =0= - G(x,t|¢,7). (8)

If G satisfies homogeneous boundary conditions ofy §,g; = 0, a relation between receiver
and source positions is possible. DED = §,(£1,71) and X@ = §,(&,, 72), be impulsive forces

in them andn direction, then the displacements can be expresse,@ as Gim(x,t|&1,1) and

ui(z) = Gijn(X,t]&2,72). Substituting those expressions in equation (6) results in a reciprocal
relationship between the Green’s tensor components:

Gnm(2, T + 12/61, 1) = Gmn(61, T — 11/62, —72) 9)
Choosing the reference time to be= 0 leaves then the final reciprocal relation:
Gnm(&2, 72|61, 1) = Gmn(1, — 71162, —T12) (10)

It is the spatial part of the reciprocity principle that | will use later.
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Reciprocity and self-adjointness of operators

Reciprocity and self-adjointess of operators are closely related to each other. The adjoint of
an operatoL, defined generally as in (6), is obtained from the solution of the problem

L*G*(x,t|£,7) = —4m8(x — £)S(t — 1) (11)

L* is then the adjoint operator of the operatoland G* is the adjoint Green’s function of
L. The operatoL is said to be self adjoint iE = L*. To see how self-adjointness relates to
reciprocity, use the generalization of the kernel in Green’s theorem.

u®. L u@ —u@. L u® = div- Pu®,u®) (12)

u® andu®@ are arbitrary solutions to the problenf?(u®,u®) is called the “bilinear con-
comittant” and is some linear combination of functionsu6f andu@. Assuming homoge-
neous boundary conditions on the surface S of the volume V, we can integrate Egn. (12) in
time and space and see that the right hand side vanishes leaving us with the relation:

u®Lu®@ = @@ (13)

The structure of equation (6) and equations (12) and (13) are very similar, in that a dot product
between the dual fieldX andu® , andu® and Lu® are formed. If the dot product test,
equation (13), for a self-adjoint operator is valid for any arbitrary solutidhsandu®, then

Betti’'s theorem is automatically satisfied. A convenient reciprocity principle for its Green’s
function can be derived. In contrast, however, the fact that an operator is reciprocal, does not
imply self adjointness. An example of the latter would be the diffusion equation.

Reciprocity in approximations

As shown in the previous section, a reciprocity relation holds for a large variety of wave prop-
agation problems. Reciprocity in a wave propagation problem may be defined as a symmetry
property of the wavefield, due to symmetry of the Green’s function. An important question
raised by Ravazy and Lenoachca (1986) was whether an approximation to the original problem
still preserves the original reciprocity relationships. Even if such an approximation is more
accurate, it might implicitly result in a Green’s kernel that is no longer symmetric and thus vi-
olates spatial reciprocity. They indeed found when investigating the scalar wave equation, that
some analytical high frequency approximations and some numerical finite-difference approx-
imations destroyed the reciprocity relationships of the original problem. It is therefore very
important to verify that if reciprocity arguments are used to derive a data processing operation,
the resulting algorithm and its numerical implementation should maintain reciprocity. Figure
2 shows a combination of two homogeneous elastic media in which a pair of source/receiver
locations are marked. The two materials have different stiffnesses and densities. At both lo-
cations, a source with identical time history is activated and at both locations the wavefield is
recorded. Source and receiver activate and registenbatidz components. Figure 3 shows

a plot of the four components of received wavefields. Across a row the receiver component
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is the same, while across the column the source component is the same. In each quadrant
two seismograms are overlaid, one at location (1) the other at location (2). The diagonal plots
show identical source and receiver components and the seismograms match perfectly. The
off-diagonal plots clearly show nonidentical seismograms; the source component is different
from the receiver component. Compare this to Figure 4, where the off-diagonal components
show a perfect match. In contrast to Figure 3, reciprocal components are selected. All seis-
mograms are now reciprocal and match perfectly. Thus the anisotropic elastic wave equation
operator is symmetrically implemented using high order finite-differences on a staggered grid.
Approximating the continuous wave equation has not broken the original symmetry.

distance |km]|

0 1 2 3 4 o) 6 i 8
OJ | | | | | | | |

Reciprocal Setup

Figure 2: Test medium for a reciprocal multi component experiment. The left location (A)
is hosted in a different medium that the right location (B). Both stiffnesses and densities are
different at these locationgmartinl-medium[ER]

Spatially bandlimited sources

The previous example was for a spatially impulsive source activated on the finite-difference
grid. The spatial frequency content of the source thus generates frequencies up to the spatial
Nyquist frequency. It is remarkable that even for the highest frequencies (where the finite-
difference approximation becomes less accurate and dispersive) numerical reciprocity holds.
However, from a physical point of view, sources on a finite-difference grid are usually not
introduced as a spatial impulse but in a bandlimited manner in order to reduce the spatial
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Figure 3: A spatially reciprocal experiment with non-reciprocal components is carried out in
the medium shown in Figure 2. A source with an inclination of -60 degrees from the vertical
is recorded into a receiver with an inclination of +60 degrees. The experiment is carried out at
both locations. Shown are the direct recordings and the off-diagonal components are clearly
non-reciprocal, martin1-drot.-60.60!/{ER]
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Figure 4: A reciprocal experiment is carried out in the medium shown in Figure 2. A source
with an inclination of -60 degrees from the vertical is recorded into a receiver with an in-
clination of +60 degrees. The experiment is carried out at both locations. Shown are the
reciprocal recordings and the all components do now match. This is in contrast to Figure 3.
|martin1-rrot.-60.60Ji[ER]
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Figure 5: Four component shot gathers are modeled with finite-differences in the medium
shown in Fig. 2. Fig. 3 and 4 compare reciprocal traces in these gatheasginl-seismoli
[ER]
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frequency content such that the difference operators are able to approximate spatial derivatives
accurately. If reciprocity has to be maintained, then a spatially bandlimited receiver has to be
used. In this way the duality of the experiment is maintained.R_denote the staggered-grid
finite-difference operator that propagates the entire wavefield Saard operator that injects
sources at certain locations in the mediuRi;denotes a related operator that extracts the
wavefield at the receiver points. For point sources and receivers these two operators just consist
of §-functions at the source and receiver locations. For a source funttfithe recorded data
D are given by

D= R . P . S f (14)

which in matrix form might appear schematically, like this

(1 )

vl U2 US . . . e . w2 wl
V1 VU2 U3 ' w3 w2
D= : _ f
w3 . wy
V1 V2 v3 L wo

ws/
(15)

Spatially bandlimited receivers and sources can be implemented using appropriate weight
functions in the projection operatoRsandS. Commonly used weights are multi-dimensional
Gaussian weightsf denotes the vector of impulsive sources on the gridded model, Wwhile
is the staggered-grid finite-difference modeling operator. Injection and extraction ope&ators
and R maintain reciprocity if are transpos&= S'. Figures 6 and 7 show the above exam-
ple with bandlimited source, but using point receivers, hence not reciprocal. The Gaussian
weight is of the general fornex p-l(x—x0*+(y-y0)>+(z-20)°] and extends over four gridpoint
halfwidth. The data traces match remarkably quite well, but deviations in the waveform are
noticable. If now also the receiver is spatially bandlimited in the same way as the source, reci-
procity is again restored and the waveforms match exactly. In many cases of data processing,
imaging, inversion or optimization, reciprocity arguments are invoked. If such arguments are
used, numerical implementations of operators should be designed to be reciprocal. | showed
the staggered-grid finite-difference wave equation operator as one such example that when
implemented conventionally is not quite reciprocal. However by symmeterizing the kernel,
complete reciprocity can be obtained.

What does it mean for seismic data ?

Recording multicomponent seismic is most often carried out over a surface. The medium un-
der investigation is parameterized by properties such as stiffness and density of the medium.
Not knowing the medium completely, experiments are designed to give us the best infor-
mation. Seismic data realistically are recorded at very sparse locations within the medium
itself, never “at every point” in the medium. Thus the complete Green’s tensor with complete
spatial coverage is surely impossible to obtain and will always be bandlimited. For an elastic
medium, the collected data will only approximate the Green'’s tensor, even if data are collected
in a manner that spans the source and receiver component space. For an ideal experiment with
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multi-component sources and receivers, we should use at least 3 linearly independent source
directions and 3 linearly independent receiver directions. Under ideal conditions then we
record the full bandlimited Green’s teng@y; i, ] = 1,2,3 at a given source-receiver pair. Us-

ing fewer components might lead to ill-conditioned inversion and imaging results. Types of
such incomplete experiments: p source into 3 component receivers (missing other two wave
types) or vertical source into horizontal geophones. One is lucky if there are near-source wave-
type conversions such that significant amounts of the “originally missing” source-wave types
are generated. However, the experiment is not orthogonal, but rather a superposition of those
wave type experiments.

HOW CAN IT BE USED?

Knowing that reciprocity holds for arbitrary inhomogeneous and arbitrary aniso-tropic media,
we can make use of the reciprocity relationship in various ways. The most commonly used
practice is to reduce data acquisition by assuming ideal recording conditions. Then, only
part of the data have to be collected and the rest can be inferred by invoking the reciprocity
relationship. Under this assumption one has only to colleg}, Gx, and Gy in addition

to Gxx,Gyy and Gz,, because by reciprocit¢syx = Gxy, Gxz = Gzx, Gyz= Gzx. The
emphasis lies here on “ideal” conditions. The other option is to claim real world conditions
are never ideal and to use the data redundancy to estimate other than material parameters,
namely source or receiver variability or classification of noise sources. But to justify such
an approach it is very important to determine the degree to which real data typically is “not
reciprocal”. Thus reciprocity measurements give experimenters a much needed handle on how
accurate and reproducible their data are.

FIELD DATA: ARE THEY RECIPROCAL ?

The Pembrook data (traces shown in the next Figures) has split spread geometry and thus
is ideal for comparing reciprocal trace pairs. During the acquisition no particular effort has
been made to ensure that the employment of sources and geophone in the field was perfectly
reciprocal. In that respect this dataset presents a typical acquisition for multi-component data.
Surface impact sources were used for acquiring this data set. Such sources are relatively
weak compared to explosive sources. Consequently each source is not only activated once,
but multiple times and the resulting traces stacked to create the final field trace. Furthermore
each source is activated at an angle with respect to the vertical, so that horizontal and vertical
components can be created by weighted subtraction or addition. Figures 8 through 13 show
reciprocal trace pairs at two different offsets (near and far). None of the trace pairs is perfectly
reciprocal, but in general the trend is the same. Most noticable are time shifts and amplitude
differences for each trace pair. The differences persist over the whole length of the trace with
good fits at various times. Such variations in the reciprocal match can be explained by noise
sources that are not part of the reciprocal experiment, such as drill, pumping or surface noise.
These questions then remain:
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Figure 8: X source near offset reciprocal trace comparisons. Left column is x receiver, middle
column is y receiver and right column is z receiver. Time progresses from top to bottom.
martin1-PemXxyz10[ER]




SEP-80 Reciprocity of vector wavefields 13

Figure 9: Y source near offset reciprocal trace comparisons.Left column is x receiver, middle
column is y receiver and right column is z receiver. Time progresses from top to bottom.
martin1-PemYxyz10[ER]
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2y trace pair

Figure 10: Z source near offset reciprocal trace comparisons.Left column is x receiver, middle
column is y receiver and right column is z receiver. Time progresses from top to bottom.
martin1-PemZxyz1([ER]
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Figure 11: X source far offset reciprocal trace comparisons.Left column is x receiver, middle
column is y receiver and right column is z receiver. Time progresses from top to bottom.
martin1-PemXxyz20[ER]




16 Karrenbach SEP-80
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Figure 12: Y source far offset reciprocal trace comparisons.Left column is x receiver, middle
column is y receiver and right column is z receiver. Time progresses from top to bottom.
martin1-PemYxyz20[ER]
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Figure 13: Z source far offset reciprocal trace comparisons.Left column is x receiver, middle
column is y receiver and right column is z receiver. Time progresses from top to bottom.
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e Are the differences in the reciprocal trace pairs significant ?
e To what mechanism do we attribute them ?

e Can we estimate source and receiver properties ?

The next section tries to give a reason as to why we should atrribute them to differences in the
source behaviour.

BLAME IT ON THE SOURCE

Differences in reciprocal trace pairs can have many causes. One reason can be the uncertainty
in source and receiver positioning, or in case of multi-component sources the misalignment of
components. These two causes have nothing to do with the medium itself, but rather are purely
geometrical effect. It may also be that a source is not behaving identically at each location.
Nonlinearities in the source surface interaction and noise may prevent exact duplication of
otherwise reciprocal data. Nonlinearity is important in this aspect, since Green’s functions
are for linear equations and nonlinear effects have unknown consequences for reciprocity. If
we assume that noise is random with respect to the reciprocal experiment and that receivers
respond reasonably isotropically, we can blame mismatches mainly on the source.

SUMMARY

| have outlined the importance of symmetrizing Green'’s function kernels of elastic wave prop-
agation operators. | have shown an example of a non-reciprocal, but very accurate modeling
operator. Symmetrizing the kernel achieved total reciprocity, however, for a spatially bandlim-
ited source, it also required a spatial bandlimiting of the receivers. Numerical methods should
always be developed such that they are accurate but still inherently reciprocal.
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