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Two-term approximation to the transmission response through a
set of thin layers

Nizar Chemingui, Robert Clapp & Francis Mdir

ABSTRACT

We present a new, far-field solution for approximating the transmission response through
a set of thin layers. The method relies on a modification to the O’Doherty & Anstey
solution to the transmissivity through a layered medium. We tested the new method on
a real log and compared the results to the ODA solution. We show that the approxjmate
solution is quite accurate and thus can be used to provide connections with the equivalent
medium theory.

INTRODUCTION

The amplitude of reflections, especially relative amplitude, provides useful information for
stratigraphic interpretation. Amplitude information, however, is not easily interpreted because
of the numerous factors that affect it. In this work we are concerned with losses caused by
transmission through a set of thin layers. A classical paper by O’Doherty and Anstey (1971)
showed that the cascaded transmission loss through a great number of interfaces is significant.
In geologic terms, they recognized two extreme types of stratification, shown in figures 1 and 2
as acoustic logs. The first log has high frequency variations in seismic impedance laid down by
a cyclic pattern of sedimentation. The second log is the product of a transitional sedimentation
process leading to a slowly-varying velocity function within basically thick layers. These
two types of sedimentation patterns can be described through the autocorrelation function of
their reflectivity series computed from the velocity and density logs. Figures 3 and 4 show
the autocorrelation functions corresponding to the cyclic and transitional log, respectively.
The important difference between the two types is that the first few values of the transitional
autocorrelation are positive, whereas in the case of a cyclic sedimentation process, the second
value of the auto-correlation is strongly negative. This reports presents a new way of
approximating the transmission response through a set of thin layers. It is essentially a far-
field approximation to the well-known result of O’Doherty & Anstey (hereinafter ODA). We
compare the results of the ODA method and ours when tested on a real log of thin layers. First
we describe the full ODA method and then show our modification of this method. We also
describe the data preparation and explain the constraints of our model.
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TRANSMISSION RESPONSE THROUGH THIN LAYERS

A Two-term approximation

The core of the O’Doherty/Anstey paper is a simple equation relating the transmissivity of a
set of equal travel-time layers to the reflection sequence the layers generate. This equation
is usefully given in a Z-transform notation which keeps one foot in the time domain and the
other in the frequency domain. The ODA result for the retarded transmissivity caused by
propagation through a set of layers is:

T@=e "R

whereN is the number of layers arf@* (2) is the causal half of the normalized autocorrelation
of the reflectivity function in a-transformnotation. R™(z) can now be expanded out into its
polynomial representation, .

T(2) = e N(Ro/2+ 121 R )

and we can replacewith its Fourier representation,
T(2) = e N(Ro/2+ X2 RieI%)
and then expand out the exponential in the exponent,

T@) = e~ N(Ro/2+ 37721 Ry TR0l ] A/ k)

and interchange the order of summation,

T(2) = e N(Ro/2HX o A /KIS F2 ) Ry 4)

and expand the summation over

T@) = e N(Ro/2+ X2 Ry)H (At Y72 JRy) -0 (At?/25 772 2R))+...)
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Now recall that reflectivity is a differential process, and if the elastic parameters are stationary
in time, then

o
Ro/2=~) R
j=1
and our first, scaling, coefficient goes to zero leaving,

T(2) = e NO@(At T2y JR) - (A/27 52, |2 R)+-.)

We have implemented both ODA solution and the the-term approximated power expansion
and compared the solutions for accuracy and convergence on a real data example.

Reflectity log from real data

Here we treat the earth as a one-dimensional medium made from the superposition of many
layers with varying acoustic properties. A seismic reflection is generated at every geological

interface across which there is a contrast of acoustic impedance. The seismic impedance
is defined as the product of density and velocity. Well log data can be used to construct a
1-D acoustic earth represented by a reflection coefficient series. For normal incidence, the
reflection coefficient is given by

. Pj+1Vj+1 — PjVj
r(j)="—r—=t (1)
Pj+1Vj+1+ Pjvj

wherep is the density and is the acoustic compressional velocity. The density and velocity
logs were recorded as a function of depth, so we resampled them in time so that the ODA
solution, and the corresponding Muir’s approximation, would be valid (both assume an evenly
time sampled series). We obtained well log data from a shaly sandstone formation, and we
extracted a section that is 512 data points long. The section defines a geologic column of 512
very thin layers. Figures 5 and 6 show the impedance and reflectivity series constructed from
the density and sonic logs.

Figure 5: Acoustic impedance series |/MzarL//Figsimpedance512.pdf
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Figure 6: Reflectivity series ..Inizarl/./Figs/reflectivity512.pdf

Figure 7. Autocorrelation of calcu- |, jnizar1/./Figs/origauto.pdf
lated reflectivity series
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Constraints of the model

Physically, the autocorrelation function of a reflection series is related to the order of multiple
reflections within the stratigraphic column. The value of the first lag represents the sum total of
all the 2-bounce multiple reflections occurring in layers of one unit of thickness. The value at
the second lag represents the sum total of all 2-bounce multiple reflections occurring in layers
of two units of thickness. Values at higher lags represent 2-bounce multiples of longer periods
(O’Doherty and Anstey, 1971). We have restricted our study to values of the autocorrelation
functions at small lags. We applied a tapering function to the autocorrelation function, which
leaves the very first few terms intact whereas, higher lag values are replaced by a decaying
exponential function. Our earlier assumption of stationarity imposes the constraint that the
sum of all reflection coefficients over negative and positive lags sums up to zero.

S R =0 @

Therefore, the damping paramegehas to be chosen to satisfy the relation

Ry j=L j=N
. —al __

S+ R+ ) e=0 &)
j=1 j=L+1

where R, is the value of the autocorrelation at zero lag dndepresents the lag at which
the exponential function is initially applied. Figures 7 and 8 show the first 50 lags of the
autocorrelation before and after adding the exponential tail. Most of the information in the
autocorrelation function is carried by the values at small lags.

Figure 8: Autocorrelation of reflec-
tivity series after applying the expo-
nential taper

..Inizarl/./Figs/dampauto.pdf

Results

After adding the exponential tail to the autocorrelation, we computed the transmissivity using
both the classical ODA approach and Muir’'s approximation. FiqQelearly illustrates that



SEP-80 Transmission loss 7

the approximation is sound. In both approachs the center of the pulse is around the 50th
time sample and the Gaussian width/height ratio is approximately the same. The difference
between the two approaches, shown in figure 9, is fairly small compared to the amplitude of the
transitional responses (less than 5%) and has the shape of a first derivative of the Gausian. The
shape indicates a small time shift between the Muir’s approximation and the ODA solution.

..Inizarl/./Figs/dif.pdf

Figure 9: Difference between ODA method and Muir’'s approximation

Remarks on the test data

When looking over the numerous papers on transmission through thin layers (Godfrey et al.,
1980),(Muir, 1992),(Muir, 1993),(Oh, 1993), we noticed that almost all the autocorrelations
of real logs had a negative value at the first lag. On the other hand, the log we worked on did
not have a negative value until the fifth lag. At first we thought that we might be dealing with

a log in an area that had predominantly transitional deposition. This hypothesis seemed to be
disproven when we looked at the impedance log corresponding to the autocorrelation function
(see figure 5). The impedance function did not appear to have a significant low-frequency
component that would correspond to transitional layering. A second hypothesis is that we are
dealing with an area whose primary depositional pattern is cyclical, but the break between its
transitional and cyclical component occurs at a higher thickness than we normally see (4ft to
1ft). This might be caused by a higher than normal rate of deposition (such as a time period in
which flooding occurred much more frequently). Or possibly by a period in which the climate
and sea level remained relatively constant causing the rate of facies change to decrease. A
further possibility can be seen by comparing the density and the velocity logs. Namely, the
density and the velocity logs did not appear to be perfectly aligned. This misalignment could
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explain some of the unusual behavior of our autocorrelation function. Figure 10 shows the
autocorrelation function assuming constant densiy; we notice that the autocorrelation has a
higher frequency content and a negative value is obtained at the third lag.

..Inizarl/./Figs/auto2.pdf

Figure 10: Autocorrelation calculated assuming constant density

CONCLUSIONS

The loss of amplitude associated with transmission through a set of layers is directly related to
stratigraphy. Cyclic sequences result in large transmission losses caused by the effects of very-
short-delay multiple reflections. The transmission response of a set of thin layers is calculated
using a two-term far-field solution. The method relies on a modification to the O’Doherty

& Anstey solution to the transmissivity through a layered medium. Results from a test on a
real log showed that the two-term approximation provides a very close approximation to the
ODA solution. The advantage of this approximation is that it can provide connections with
equivalent medium theory.
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