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Modeling 3-D anisotropic fractal media

Nizar Chemingd

ABSTRACT

This paper presents stochastic descriptions of anisotropic fractal media. Second order
statistics are used to represent the continuous random field as a stationary zero-megan pro-
cess completely specified by its two-point covariance function. In analogy to the two-
dimensional Goff and Jordan model for seafloor morphology, | present the von Karman
functions as a generalization to media with exponential correlation functions. | also com-
pute a two-state model by mapping the random field from continuous realizations to a
binary field. The method can find application in modeling impedances from fractal media
and in fluid flow problems.

INTRODUCTION

Our understanding of the physical phenomena occurring in the earth always involves the study
of the medium itself. Unfortunately, the earth offers an unusually complicated medium in
which heterogeneities are observed at every scale. Sometimes the problem is too difficult to
deal with deterministically but it turns out to be quite simply treated by statistical methods. So-
lutions to the one-dimensional problem have targeted the study of reflectivity series obtained
from well logs. Seismic impedance can be modeled as a special type of Markov chain, one
which is constrained to have a purely exponential correlation function (Godfrey et al., 1980).
The two-dimensional problem has gained a lot of attention in the recent years from studies
of seismic scattering in heterogeneous media, e.g., (Wu and Aki, 1985; Frankel and Clayton,
1986; Goff and Jordan, 1988; Holliger and Levander, 1992; Holliger et al., 1993). Three di-
mensional simulations can be used in fluid flow experiments (Popovici and Muir, 1989).

This paper presents a method for simulating three-dimensional anisotropic random fields
using second order-statistics. The method was introduced by Goff and Jordan (1988) to model
a two-dimensional seafloor morphology. | have considered the cases of random media charac-
terized by Gaussian, exponential and von Karman correlation functions. | use the von Karman
functions as a generalizations to the exponential correlation functions in modeling random se-
guences. This type of correlation function was first introduced by von Karman (1948) for char-
acterizing the random velocity field of a turbulent medium. It has since been frequently used
in the statistical literature, studies of turbulence problems, e.g.(Tatarski, 1961), and studies of
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random media such as wave scattering, e.g.(Chernov, 1960). The von Karman functions were
identified specifically as belonging to the class of continuous correlation functions (Matern,
1970). Holliger et al. (1993) used von Karman covariance functions to model binary fields
and defined “binarization” as a mapping of all values in a continuous field to just two values
of the new field. | have employed their technique to model two state models (i.e, rock/pore
or sandstone/shale) from continuous realizations and test the increase in medium roughness
through the “binarization” process.

RANDOM FIELDS

A stochastic model is constructed for the properties of the random medium. We first construct
a distribution function P(x) for the properties of the medium h(x). From such a probability
function, we can recover the statistical properties of the distribution (i.e., mean, variance ,
etc.) through its N-point statistical moments (Goff and Jordan, 1988).

CN(Xl,Xz,...,XN) = <h(X1)...h(XN)>

+00 +00
=f f hi..hin P(hy, ....hn)dhy.. dhy (1)

wherehy = h(xy). The key assumption of spatial homogeneity (stationarity) means that the
N-point moments are taken to depend only on the vector joining these points and not on their
absolute positions. These moments describe the magnitude and smoothness of the fluctuations
of h(x).

Second-order Statistics

| restricted this research to the study of second-order statistics of random fields. This means
the study of random media characterized by Gaussian distributions, where a Gaussian process
is completely specified by its first- and second-order moments. Furthermore if | define the
field h(x) to be a zero mean process:

+00
<h(X) >= / h(x)P(h(x))dh=0 (2)
thenh(x) is fully described by its two-point moment that is its autocovariance function which
we write as a function of the correlation function:

Chn(r) = E[(x)h(x+1)] = HZpnn(r) 3)

whereP(h(x)) is the probability density function d@f(x), r is the lag vectorE is the expected

value, H? is the variance (i.eCnhn(0)) andpnn is the three-dimensional correlation function.
Equation (3) shows that the random medium can be adequately specified by its autocorrelation
function. More generally, an anisotropic random field can be described by a monotonically
decaying autocorrelation function whose rate of decay depends on direction. The roughness
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of the medium is function of the decay rate of the correlation. The Fourier transform of the
autocorrelation is the power spectrum of the field (Bracewell, 1978). Three types of correlation
functions were commonly used in the field of seismic modeling: the Gaussian, exponential and
von Karman functions. These special functions are described by analytic expressions of their
autocorrelations and Fourier transforms.

Two-dimensional cases have been studied for some time(Wu and Aki, 1985; Frankel and
Clayton, 1986; Goff and Jordan, 1988; Holliger and Levander, 1992; Holliger et al., 1993).
Within the last several years, computer capacity and speed have grown rapidly. It is now
feasible to extend our models and simulations to the three-dimensional case.

von Karman correlation functions

The three-dimensional anisotropic von Karman function is given by (Goff and Jordan, 1988):

ArvH2r K, (r)
C) = 4
="K @
and its three-dimensional Fourier transform is:
P(k)_4an2a§+a§+a§ 5)
KV(O) (1+ k2)v+%
wherer = g—g + Z—g + :T; k= \/k§a§ +kfag +kzaZ; ax, ay anda; are the characteristic scales

of the medium along the 3-dimensions ald ky andk, are the wavenumber components.

K, is the modified Bessel function of order where 0.0< v < 1.0 is the Hurst number
(Mandelbrot, 1983, 1985). The fractal dimension of a stochastic field characterized by a von
Karman autocorrelation is given by:

D=E+1—v (6)

wherekE is the Euclidean dimension i.€,= 3 for the three-dimensional problem. The special
case ofv = 0.5 yields to the exponential covariance function that corresponds to a Markov
process (Feller, 1971).

C(r)=H?%" 7)

whose three-dimensional Fourier transform is given by:

2 2 2
P(k) = He T T

(14 k2)? ®)

Decreasing the Hurst number, increases the roughness of the medium. The limiting cases
of unity and zero correspond to a smooth Euclidean random field and a space-filling field re-
spectively.
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Figure 1: Comparison of 1-dimensional isotropic von Karman autocorrelation functions for
varying hurst numben,. [ nizar2-karmah[NR]

Figure 1 shows the one-dimensional isotropic von Karman correlation function plotted for
different values ob. The functions have exponential behavior but different decay rates. The
higher the slope, the rougher the medium (i.e., the lowei).isThe exponential behavior is
explained by the modified Bessel functiokg(x) which in the regiorx > v behave as

Ky (X) ~

1
- exp (x) %)

For comparison of the results, | also include the anisotropic Gaussian autocovariance function,
which in 3-D has the familiar form:

_r2

C(r)=H% (10)
and its 3-dimensional Fourier transform is given by:
axayd, 2
P(K) = 2 2% (11)

FORWARD MODELING

Continuous random fields have frequently been used for statistical analyses, modeling per-
turbed media, scattering and diffraction studies, fluid flow simulations and, other related prob-
lems. Numerical realizations may describe the statistical character of random models at all
scales.
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Numerical Implementation

The generation of synthetic random media is done in the wave number domain. First, we com-
pute the power spectrum of the field, i.e, the Fourier spectrum of the autocorrelation function.
Then we compute the Fourier spectrum by multiplying the square root of the power spectrum
by a random phase factef”” wheren is a uniform deviate that lies in the interval [0,1). In a

final step we apply an inverse fast Fourier transform to obtain the spatial domain representation
of the random medium. The numerical implementation of the method is very straightforward,
although special care is required to handle D.C. and Nyquist wavenumbers.

Algorithms are similar for the one-, two- and three-dimensional problem although if we do
not care about computer expenses, 1- and 2-D random sequences can be simply extracted as
arrays or sections from 3-D simulations.

Figure 2: Synthetic random field with anisotropic Gaussian autocorrelation funagienl5,

oy = 25,8, = 35 [izar2 GAUSHER]

Modeling 3-D random media

| show three different realizations of an anisotropic model with different aspect ratios along
the three coordinate axes. The model is a 64 points cube with characteristicaxcalds,

ay = 25, anda, = 35. The media are characterized by Gaussian, exponential, and van karman
autocorrelation functions, respectively. We notice the increase in model roughness as we move
from the Gaussian medium to the exponential field ¢i.e; .5) and then to the von Karman

field with v = .2.

In the physical world, these fields may represent media at different scales varying from the
microscopic to the megascopic.
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Figure 3: Synthetic random field with anisotropic exponential autocorrelation funetjcs;

15,a, = 25,a, = 35.|nizar2-exp[ER]

Figure 4: Synthetic random field with anisotropic von Karman autocorrelation funetics;

15,ay = 25,8, = 35. [ER]



SEP-80 Fractal media 7

Modeling seismic impedances

Seismic impedances have frequently been modeled as a Markov process. Godfrey et. al.
(1980) modeled impedance as a special type of Markov chain, one that is constrained to have
a purely exponential correlation function. They tested their method on three actual logs and
compared the autocorrelation function to a best fit exponential curve. Apart from a small ge-
ologic noise component at the origin, their results showed excellent agreement between the
theoretical exponential and the actual autocorrelation on two of the well logs they considered.
For large lags, the actual correlation function had exponential behavior similar to that of the
theoretical curve, but all data points fell below the synthetic curve showing a faster decay rate.
The behavior of the autocorrelation could very well be interpreted as related to a rougher distri-
bution than that predicted by the exponential correlation. A von Karman correlation function
with a Hurst number smaller than 0.5 would have given a better fit to the autocorrelation of
the impedance series. The autocorrelation of the impedance function provides information on
the depositional pattern in the sedimentary column i.e, cyclic or transitional (O’'Doherty and
Anstey, 1971).

Figure 5 shows a comparison of one-dimensional random sequences that simulate syn-
thetic impedances with von Karman correlation functions of varying fractal dimensions (i.e.,
Hurst numben). Again the smaller the value of the rougher the sequence. The impedance
with exponential correlation seems smooth compared to the ones generated from autocorrela-
tion functions with values of lower than 0.5.

v=0.0

Figure 5: Synthetic random sequences simulating acoustic impedances with von Karman au-

tocorrelation for varying Hurst number | nizar2-imped[NR]
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GENERATING TWO-STATE MODELS

In the geophysical world we often deal with heterogeneous media whose inhomogeneities are
caused by the presence of two different types of material with different mechanical properties.
A typical example is the case of a stratified formation of shale embedded in sandstone. In fluid
flow and reservoir engineering problems, the rock samples are generally composed of a matrix
and pore space. Continuously random fields are therefore inadequate to describe randomness
in similar settings. | seek to describe a random field in which the medium can be represented
as a two-state model. This new field is called a binary field and the process of deriving the
binary field from the continuous field is called “binarization” (Holliger et al., 1993). The
problem is to relate the statistics of the binary field to those of the continuous field. Holliger et
al. (1993) gave a brief description of their mapped two-dimensional binary field which I apply
in a straightforward generalization to the three-dimensional problem.

To illustrate the effects of “binarizing” a continuous field, let's consider two examples of
random fields with Gaussian and exponential autocorrelation functions, respectively. In the
first example | simulate a randomly-stratified medium. The second example is a realization of
a random medium with statistically isotropic homogeneous inclusions. | like to analyze the
change in the medium properties by comparing the autocorrelation function of the distribution
before and after “binarization”. For better observation, | limit the analysis to the study of the
correlation function along one axis, i.e, in the x-direction.

Figure 10 shows the averaged 1-D correlation function along the x-axis for the randomly
layered medium. The solid curve displays the autocorrelation of the continuous field; the
dashed one represents the autocorrelation of the “binary” field. The two functions are no-
ticeably different from one another; the slope near the origin is greatly increased after “bina-
rization” indicating a rougher distribution compared to the continuous case. Figure 11 shows
the same observations for the isotropic random field with Gaussian autocorrelation; again the
roughness of the field has increased as indicated by the steepening in the slope of the autocor-
relation.

CONCLUSIONS

In this initial study | have tackled the forward problem for modeling anisotropic fractal media
using second-order statistics. The method has close analogy with the two-dimensional Goff
and Jordan model for seafloor morphology. The generation of synthetic models is done in
the Fourier domain and the algorithms are similar for the one- two- and three-dimensional
problems. The von Karman functions are presented as a generalization of the exponential
correlation function associated with the Markov process in modeling seismic impedances. The
von Karman functions can be used for better description of statistic lithology of stratigraphic
columns and understanding their depositional pattern. | have also computed a two-state model
(i.e., rock/pore or sandstone/shale) by mapping the random field from continuous realizations
into a binary field. Comparisons of the autocorrelation functions of the continuous and binary
fields show that the fractal dimension (i.e, the roughness of the medium) increases through the
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Figure 6: Synthetic continuous random field with apparent layering and Gaussian autocorre-
lation; a, = 5, ay = 80,a, = 80. nizar2-|ayereqj[ER]

Figure 7: Synthetic binary field derived from the continuous realization of a layered random

field with Gaussian autocorrelatiomizar2-lay-bin [ER]
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Figure 8: Synthetic continuous random field with isotropic Gaussian autocorrelation function;
ax = 15,ay = 15,a, = 15. |nizar2-isotropi¢[ER]

Figure 9: Synthetic binary field derived from the continuous realization of a random field with

Gaussian autocorrelatiomizar2-iso-bin [ER]
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Figure 10: Autocorrelation functions of the continuous (solid lines) and binary (dashed lines)
fields for the layered random medium with exponential correlaﬁuiraarZ-auto-expﬁER]
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Figure 11: Autocorrelation functions of the continuous (solid lines) and binary (dashed lines)
fields for the isotropic random medium with Gaussian correlemdzarz-auto-gau#ER]
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“binarization” process.

FUTURE WORK

Future goals of this effort will be to formulate the inverse problem for estimating the char-
acteristic parameters of the anisotropic fractal medium, i.e, aspect ratios of anisotropy, and
Hausdorff (fractal) dimension. The technique of deriving the binary field from the continuous
random field should be extended to simulate M-state models, where M is the number of states
or rocks composing an impedance well-log.

| also need to test the method on actual well-log data and demonstrate a better fit with von
Karman correlation functions compared to the exponential fit. This would would be the first
application of the inverse problem. Two and three dimensional problems can find application
in the field of wave scattering and diffraction and in fluid flow problems.

APPENDIX A

von Karman covariance function

Equation (4) in the text represents the autocovariance of a random medium of fractal nature.
The power spectrum of the field corresponds to the Fourier transform of its covariance func-

tion:
P(k) = /_ :o /_ :O f_ :oC(r)e‘ik'rd?’r (A-1)

Using the N-dimensional Hankel transform (Lord, 1954), the covariance function and its
Fourier transform can be related as follows:

p(k) = (27 )N/2k—N/2+1 / Oor N/2 3N 21 (rk)C(r)dr (A-2)
0

C(r) = (27)N/2r —N/2+1 f ookN/ZJN 2-1(rk) P(K)dk (A-3)
0

whereJy -1 is the Bessel function of ordé /2 — 1.
The covarianc€(r) in (3) is specified in terms of the function:

G,(r) =r"K,(r) 0<r <o v e[0,1] (A-4)
whose Hankel transform pair has been derived by Lord (1954):

F'(v+N/2)
21—N—uJTN/2

v—N/2

P(k) = (1+k?)~ (A-5)

whererl is the gamma function defined as:

I'(z) = /o oot“e*‘dt (A-6)
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Finally if we normalizeG,(r) by G, (0) as in Goff and Jordan (1988), we obtain, for the
three-dimensional case, the power spectrum of the field whose covariance is defined by (4):

(—v=3/2)

P(k) = 4rvH?(1+k?) (A-7)
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