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Speed and precision of dip moveout

Patrick Blondet

ABSTRACT

The oil industry’s need for high-quality images of the Earth’s interior has become more
and more pressing in last ten years. In practice, the quality of seismic imaging in-
creases with the amount of data acquired. Therefore, seismic surveys often include|three-
dimensional and high-coverage acquisitions that result in a huge quantity of data to pro-
cess. For timely results each step of the processing sequence must be as fast as possible.
A time-consuming step in a standard seismic imaging flow is dip moveout correction.
Therefore, enhancing the speed of this step without sacrificing precision is essential to
improve the state of seismic imaging.
The rapid processing of a huge amount of data requires us to simplify complex algo-
rithms. Under the constant velocity assumption, the formulation of the dip moveout| cor-
rection reduces to the equation for an ellipse. Because its expression remains simple in
three dimensions, the process is computationally efficient. However, in the case |of an
irregular data acquisition geometry, the chaotic spatial spreading forbids a trace-parallel
implementation. This problem is solved by a time-parallel implementation that allows a
fast processing for any azimuthal distribution in the data.
There are two ways to improve precision in amplitude balancing and focusing of the|seis-
mic images with the dip moveout process. The first is to apply a proper weight along
the operator, which is achieved at almost no extra computational cost. The second way
is to consider depth-variable velocity. The dip moveout correction then becomes com-
putationally expensive. However, an approximation valid for gently dipping reflectors
allows the variable-velocity process to be almost as fast as the constant-velocity process
while improving the focusing of seismic events. This method is easily applicable in three
dimensions as a first-order approximation of the theoretic “saddle” operator.

INTRODUCTION

The oil industry has become more reliant on seismic data interpretation than in the past. Two
decades ago, only basic processing was required to find a potential oil trap. Gradually, the
processing sequence has been refined to detect and outline new traps that were previously
considered not interesting or not even considered at all. However, seismic acquisition and
processing can be improved to more accurately reflect the Earth’s structure. Currently, we
enhance the acquisition by densifying the shot and geophone distribution or shooting three-
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dimensional surveys and we refine the imaging tools by taking into account variable velocity
and amplitude effects. Consequently, the processing industry needs to develop fast and ac-
curate three-dimensional processing tools. Nowadays, a standard industrial seismic process-
ing sequence almost always involves the dip moveout correction. When a constant-velocity
Earth model is considered, the speed of this process makes it very attractive, even for three-
dimensional data. However, the imaging quality may be poor in the case of three-dimensional
data, when the amplitude and aliasing effects are not accurately considered. On the other
hand, the dip moveout process can gain in precision by considering variable velocity, but it
then loses rapidity. In this paper, | address the problems of speed and precision of the dip
moveout process in a three-dimensional Earth model. Part | reports on research in which |
make the limiting assumption of a constant velocity model in order to design a simple, fast dip
moveout process. After an analysis of the amplitude and phase of the dip moveout operator,
| present a parallel implementation of the process. In the work described in Part Il, | make
the assumption of a depth-variable velocity model in order to increase the precision of that
process. This part compares the results of two different method&ptlip moveout in two
dimensions (Artley, 1992; Castle, 1993) after post-stack migration. Finally, it includes a for-
mulation for an accurate three-dimensional dip moveout process in a depth-variable velocity
medium that Craig Artley, Alexander Popovici, Matthias Schwab, and | derived in a previous
paper (Artley et al., 1993).



Chapter 1

Part |: Speed for 3-D constant-velocity dip
moveout

The rapid processing of a huge amount of data requires us to simplify complex algorithms. Un-
der the constant velocity assumption, the formulation of the dip moveout correction reduces
to the equation for an ellipse. Because its expression remains simple in three dimensions,
the process is computationally efficient. However, in the case of an irregular data acquisi-
tion geometry, the chaotic spatial spreading forbids a trace-parallel implementation. After
discussing the amplitude and phase of the elliptic dip moveout operator, | propose an efficient
time-parallel implementation that allows a fast processing for any azimuthal distribution in the
data.

AMPHTIREE BIERRRORAL T EGRRIANE MBI ORERATER'NG

A method of three-dimensional integral dip moveout processing for constant-velocity media
must cope with problems related to amplitude and aliasing. The convolution of the dip move-
out operator with triangle functions avoids the aliasing effect. A study of different amplitude
weightings leads to the choice of the weighting scheme derived from a Fourier domain ex-
pression of dip moveout (Black et al., 1993). Testing the method on a 3-D synthetic data set
shows the conservation of the amplitude-versus-offset (AVO) effect throughout the dip move-
out (DMO) process.

Introduction

The Fourier domain DMO methods give appropriate results for 2-D lines but are time-consuming.
In 3-D surveys, their implementation becomes more difficult because the spatial sampling rate
as a function of azimuth is variable and irregular. In contrast to Fourier domain DMO meth-
ods, the integral DMO method is not affected by this problem and provides cheap processing

3



4 Blondel SEP-80

because of the limited extent of the operator (which is two-dimensional and dip-limited). How-
ever, the implementation of an integral method requires explicit knowledge of the operator as
well as of the weight applied to each operation. The next section describes the shape of the
operator, and the second section states three rules that the DMO operator must Baésfy.
shape of the operator

Deregowski (1981) thoroughly described the elliptic DMO operator; | include Figure (1)
only for the sake of introducing the terminology used throughout this paper. The operator is a
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Figure 1. The DMO operator (bold line) is geometrically constructed from the elliptical reflec-
tor corresponding to an impulse in a (time, midpoint) section. Notice that irtghe Epace,

the maximum slope is/2. | patrick-Shape[NR]

dip-limited ellipse defined by the equation
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Because it is kinematically impossible to have reflectors dipping more than the slope 2
a zero-offset constant-velocity time section, the DMO operator is dip-limitéeé. rules the
operator must obey

The primary attribute of an integral method is to respect the kinematic component of the
process. However, in order to yieldcansistenstack of the operators illuminating a given
location, the integration should be a weighted sum. In other words, an amplitude function
should be applied along the operator. The integral DMO process wilbhsistentf it obeys
the following rules.

Rule 1. According to Hale (1991), “The impulse responses [obtained by Fourier Trans-
form DMO] may be used as a standard by which to judge integral DMO methods”. Because
(f,k) DMO methods have a perfect behavior with respect to amplitude, the integral DMO
operator should be as close as possible to th&)(DMO operator in amplitude and phase.
Thus, we expect the integral impulse response to have a low amplitude and a high-frequency
content neax = 0 and a high amplitude and a low-frequency content when the slope of the
operator becomes steeper.



SEP-80 Fast & precise DMO 5

Rule 2. Flat events must not be affected in amplitude and phase by the DMO process. This
rule, clearly stated by Hale (1991), is perfectly respected by dnl)(DMO process (Hale,
1983a; Liner, 1990), but it represents a challenging test for integral DMO processes.

Rule 3. Events of a given reflectivity must show balanced amplitude after the DMO pro-
cess, whatever their dip. This rule is essential in order not to spoil the data for a possible AVO
study.

The first section of this part explains how to avoid the aliasing of the operator. In the
next section, the three rules stated above help us choose the most convenient weighting among
three amplitude schemes selected from the literature. Finally, a brief section discusses how to
apply the operator on a 3-D grid.

The triangle as an anti-aliasing structure

In the Fourier domain, the operator is not aliased. However, space-time integral methods must
be applied carefully to account for operator aliasing. For a given temporal frequency of the
data, the increase in the dip of the operator produces an increase in the spatial frequency until
it reaches the Nyquist frequency (two points per wavelength). Beyond that point, the operator
is aliased. Claerbout (1992) introduced an efficient technique to avoid the aliasing of the
operator with Kirchhoff methods. Instead of spreading a simple spike along the operator, a
dip-dependent triangle is effectively convolved with the operator. Assuming spatial spacing of
AX, the width of the triangle at a point of the operator is determined by equation (2)

At = (3—:) AX, (2)

where(‘(’j—tg) is the operator dip. Itis therefore assured that the operator always has at least two

points per wavelength on the spatial axis, even when the time frequency of the data is Nyquist.
Figure (2) shows the impulse response of a spike when the triangle anti-aliasing method is
used. The phase shift caused by the half differential filter (usual in 2-D Kirchhoff methods)
makes the triangles look like the teeth in a shark’s jaw. The triangular weight can be built
with three spikesAlt(—l,...,+2,...,—1) separated by; and submitted to both causal and
anticausal integration. As Figure (3) shows, the anti-aliasing process is cheap because each
output trace is double integrated only once.

Amplitudes along the DMO operator

A rich literature has been published describing “true” DMO amplitudes, which suggests that
the truth is variable! In this section, | examine three propositions for amplitude weighting
(Beasley and Mobley, 1988; Gardner and Forel, 1990; Black et al., 1993) to find the one
that best verifies the rules stated in the introduction. | then discuss the inclusion of factors
accounting for the spherical divergence and the effect of anti-aliasing on ampliiffesent
weighting schemes
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Figure 2: Impulse response of the
anti-aliasing integral DMO using tri-  |../patrick/./Fig/lraa.pdf
angles. Input spike: 1.0 s; velocity:
2000 mst.

Figure 3: Decomposition of the

method for building triangles. All "
lines are equivalent: a triangle func- I
tion is the convolution of two box 24

functions (line 1 to 2); a box function

is the integration of a two-opposite- 1 I O * I S
spike signal (line 2 to 3); the convo- ™ A B
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spike signals is the final three-spike
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tions are performedpatrick-triangld
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The weighting scheme proposed by Beasley (1988) is based on a heuristic approach. Start-
ing from the dip-domain formulation of DMO (Jakubowicz, 1990), he showed that the ampli-
tudes along the DMO operator are proportional to its curva%@?e Then he constrained the
amplitudes in time and offset to verify Rule 2, assuming a dominant frequency of the data. He
came up with the following expression:

AX 1
A t,h,X - 1 3
1{ta. %) AX+2h/25—s2 <1 Xz)g )
T h?

wheres = (2 fqt,) "t and fq is the dominant frequency. Gardner (1990) introduced the DMO-
NMO method and derived a DMO amplitude factor that is directly related to the curvature of
the operator through the expression

1
d%to ) 2 1 1
st (- (£5)) vt @
X h ( Xz)z
~h?
Recently, Black et al. (1993) derived the following mathematical expression for integral DMO
from the (f ,k) DMO expression:

2
1 1+4
Ag(tn.h,X) = Vins P (5)
(1-%)°
h2

I now apply the rules to the three weighting schemes and compare their réaulksl. Fig-

Figure 4. Normalized weighting
schemes compared tof (k) DMO
amplitudes. Dotted line: Beasley; |.jpatrick/./Fig/Amp.pdf
Dashed line: Gardner; Dashed-dotted
line: Black; Solid line: picked ampli-
tudes on the {,k) DMO operator.

ure (4) shows the comparison of the different weighting schemes normalized by their value
at x = 0 with the amplitude picked along the impulse response offgk)(DMO program
(Zhang’s formulation). The different curves agree in shape, their concavity turned upward.
However, Black’s and Beasley’'s schemes are closer to thk) (DMO amplitudes. The
decrease in amplitude of thd (k) amplitude whenx increases is caused by the velocity-
dependent dip limitation of the operator. The three weighting functions have been plotted
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up to x = h without taking the limitation into accountRule 2. Figure (5) shows impulse
responses that have been stacked alongthris. This stack simulates the contribution of
impulse responses along a horizontal planar reflector to a single trace. Thus, to obey the sec-
ond rule, the stacked impulse response should yield the input impulse. The three weighting
schemes restore the balanced amplitudes of the impulse rather well. However, Gardner’s and
Black’s schemes show a better stack, especially at earlier times, where Beasley’s weighting
produces strongest artifactRule 3. In order to verify the third rule, | used a 3-D synthetic

..Ipatrick/./Fig/Imp.pdf

Figure 5: Impulse responses stacked alongxtais. The top left plot is the input impulse.
Three impulse responses have been generated with three weighting schemes and then stacked
along thex-axis.

dataset created by David Lumley. Figure (6) shows an NMO-corrected section of the model
for a shot located at = 0. The structure is composed of three planar reflectors: a horizontal
reflector showing some amplitude effect (the amplitudes increase away from the source) and
two shallow, dipping reflectors (15 and 30 degrees). Figure (7) shows the result on the same
section after the 3-D DMO. Some strong artifacts appear above the horizontal reflector, and
the amplitudes are not well balanced along the reflectors or in relation to each other. This poor
result is mainly caused by omission of spherical spreading and the amplitude-boosting effect
of the anti-aliasing trianglesSpherical divergence
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Figure 6: A slice in the 3-D data af-
ter NMO. The horizontal plane shows
some amplitude effect. The two other
planes dip at a 15-degree and a 30-
degree angle, respectively.

../patrick/./Fig/Nmo.pdf

Figure 7: A slice in the 3-D data after
DMO with Black’s amplitudes, with- .Ipatrick/./Fig/lDmo1.pdf
out spherical spreading and without
triangle effect corrections.




10 Blondel SEP-80

As suggested by the preceding result, spherical divergence should be included in the DMO
process. Indeed, for a given shot-geophone traveltime, the zero-offset ray path when the reflec-
tor is dipping is shorter than when the reflector is horizontal. Since the decrease in amplitude
of a spherical wave is inversely proportional to the distance traveled, the spherical spreading
is clearly related to the dip of the structures and, thus, must be included in the DMO process.
Gardner (1990) expressed the spherical spreading factor as a funckdr/bf — x2) andt,

(to). As a function ofh, t,, andx, it becomes

242 2
5 vt X

The two first terms of expression (6) account for the offset and the depth of the reflector,
whereas the third term clearly accounts for its difhe effect of the anti-aliasing triangle
width

The anti-aliasing is performed by effectively convolving a triangle function with the output
trace. The width of the triangled;, usually exceeds the time sampling ratet, for the
steepest dips. Therefore, the triangles overlap and produce an undesirable amplitude increase.
The number of overlapping triangles is proportional to their width. Thus, a reasonable method
of amplitude correction is to divide the convolution trianglesAyy as follows:

1
Faa = —. 7
= ™)

Figure (8) shows the same section of the 3-D cube as Figure (7), but the DMO process now

Figure 8: A slice in the 3-D data after
DMO with Black’s amplitudes, cor- | patrick/./Fig/Dmo2.pdf
rected for spherical spreading and the
triangle effect.

involves the two correction factors for spherical spreading and triangle width. The amplitude
effect along the horizontal reflector is restored, and the relative amplitude of the different
reflectors is better balanced and closer to the amplitude distribution in Figure (6). The third
rule is now more completely verified although some singularities occur at the near offset traces
(close tox = 0).
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The DMO operator in three dimensions

As described by Hale (1991), the zero offset rays bouncing off an ellipsoidal reflector of foci
S (source) ands (geophone) emerge on the segmed@[. Therefore, the DMO operator is
really a 2-D operator working along the source-geophone line, even in a 3-D space. Conse-
guently, applying the operator in three dimensions is not much different than in two dimensions
except that the trace smearing is performed for an irregular spatial sampling according to the
azimuth. The technique used in this 3-D DMO code consists of computing the bins affected by
the segment$G. More precisely, whenever the center of a bin is closer to 81€] [segment

than half the bin size, the bin receives an output trace. This operation is repeated for all input
traces, gradually filling the output space. This technique is equivalent to the nearest neighbor
interpolation in space and linear interpolation in time described by Nichols (1993). This al-
gorithm requires some evenly distributed data so that the fold over any bin is nearly constant.
Dividing the trace amplitude by the fold of the corresponding bin seems an attractive solution,
but it may spoil the amplitude properties of the data.

Conclusion

| implement a three-dimensional integral dip moveout processing algorithm for constant-
velocity media that prevents operator aliasing. The study of amplitudes led me to choose
Black’s formulation as the most satisfactory in regard to three rules that assure the proper
behavior of the DMO process. The method also corrects for spherical spreading. Although
the program has not been tested on real 3-D data, the results with synthetic data, especially
regarding amplitude restoration, are encouraging. The next step consists of implementing the
algorithm on the Connection Machine.

A PARALLEL IMPLEMENTATION OF KIRCHHOFF DMO

In this section | compare two parallel algorithms for three-dimensional Kirchhoff dip moveout

in a constant velocity medium. In the case of 3-D land data, an algorithm where data are
processed in time slices allows highly irregular offset geometry. This mapping of the data
into processor memory minimizes the cost of communication, which is reduced to nearest
neighbor communication of time slices, and achieves load balance, keeping 80 percent of the
processors busy throughout the process. The time aliasing of the operator is solved by a spatial
convolution with dip-dependent triangles in two dimensions and with dip-dependent pyramids
in three dimensions.

Introduction

Over the last years, DMO has become a standard step in seismic processing flows. The main
reason for this is that it clearly improves the stack for little extra computational cost. Recently,
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some research showed that the improvement is even more distinct when depth-variable veloc-
ity is considered in the DMO process (Godfrey, 1992; Artley, 1992; Meinardus and Schleicher,
1993). However, these new methods are computationally expensive and a constant-velocity
DMO is often enough to give an idea of the geological structures involved or improve the ve-
locity analysis. Therefore, a parallel implementation of constant-velocity DMO is natural to
reduce the processing time cost. In a 3-D constant-velocity medium, the DMO process uses a
line operator (Hale, 1991). It convolves the input data with elliptical impulse responses, and
sums the convolved data into the final stacked volume. The single dimension of the operator as
well as its dip limitation are two reasons to consider 3-D constant-velocity DMO as a fast pro-
cess whatever the geometry of the data acquisition. Unfortunately, the multi-azimuthal distri-
bution of 3-D land data is a major obstacle for parallel implementation (Biondi and Moorhead,
1992). This section details two possible parallel algorithms for 3-D constant-velocity DMO.
The first algorithm involves a spiral data movement that does not use the full computational
capabilities of the Connection Machine (CM5). The second algorithm reduces the communi-
cation cost by processing time slices but requires additional care to avoid temporal aliasing of
the operator.

First algorithm: DMO by spiral data movement

The parallel implementation of DMO in a two-dimensional space is straightforward. Biondi
(1991) describes a simple algorithm where the traces are laid out local to each processor. The
DMO process then consists of a trace stretch and a nearest neighbor shift along the midpoint
axis. In three dimensions, the data shift is not restricted to a single axis but requires a move-
ment of the input traces across a two-dimensional space. Biondi (1992) uses the same layout to
apply DMO to 3-D marine data. The algorithm takes advantage of the regular data movement
in the in-line direction because of the uniform sampling of the shot locations. However, 3-D
land surveys record shot profiles of varying geometry (an example is shown in Figure (9)), and
thus, the shot axis can not be processed in parallel.

Figure 9: This simple 3-D land ac-
quisition geometry exhibits the non- line of
recurrence of the shot profiles. As geophones
opposed to marine surveys, the geo- L
phone line does not move along with

the shot location. patrick-land3q!
INR]
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Memory layout

Since the irregularity of 3-D land data appears in both azimuth and offset distributions,
there is no preferential direction for data movement. Hence, Biondi had the idea of a spiral
data movement alternating the shifts alongxh@ndy- axes. The algorithm can be outlined
as follows:

1. The data are sorted by offset length into classes.

2. For each bin of the output space, the trace of the current class whose midpoint falls into
the bin is loaded in-processor.

3. The DMO stretch is performed in parallel over output space.

4. The traces are moved to the neighboring processor according to a spiral pattern illus-
trated in Figure (10).

G
/
Y4
g

Figure 10: Spiral pattern for data ] 7z b
movement over output space. The ! i _‘?A

shaded squares represent the proces- I A

sors that actually perform the stretch ! ‘/ # |

and the stack to the output. The white

squares represent the processors that ) L ,_ |
stay idle during the movement of the

race patrick-spira| IR

LT
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Load balance

By sorting the data into classes of offset, we can restrict the size of the spiral to the max-
imum offset of each class. The spiral data movement allows any azimuth distribution of the
input traces. However, because a trace contributes to the stack only along its original source-
geophone line, some processors are left idle during the spiral trip of the trace. Figure (10)
shows the working processors in grey and the idle processors in white. In this example, the
computer load, defined as the ratio of the number of working processors to the total number
of processors, is thirty percent. For larger offsets, the load balance is expected to be worse
because the number of working processors increases in proportion to the offset length whereas
the total number of processors increases in proportion to the square of the offset. The unopti-
mized use of processing power makes the algorithm inefficient for 3-D land data.

Second algorithm: DMO by time slice

In order to spread the data along an elliptical path ir,{) space, it is possible to either move
spatially from bin to bin and stretch the traces or move the time slices upward and stretch the
data in the offset directioriMemory layout

The memory layout for processing time slices is illustrated in Figure (11). The time slices
are local to each processor and the time axis is the parallel dimension. Thus, the number of
processors needed is the number of time samples, and the memory of each processor must
be large enough to load and process one time slice. When the amount of data exceeds the
memory available, the process can run on blocks of data. The blocks may be pieces of data cut
in the (x,y) space, preserving the parallel axis and relieving the processors memory, or they
may be cut in time, shortening the parallel axis but requiring a smaller area of overlap between
successive lumps. Unlike the previous algorithm, data communication is performed in a single
direction, up the time axis, and does not depend on the offset and azimuth distribution. The
long ranging and chaotic communications in tley() space take place in-processor. Thus,
the processing of time slices results in a more efficient inter-processor communication than
the trace processing.oad balance

Because the DMO elliptic operator is dip-limited, it does not extend all the way up to the
Earth’s surfacet(= 0). The time spread of the impulse response is given by:

1
At=t,|1-—— |, (8)

2
tm
1+ (E)

wheret, is the time location of the impulse in the input spakés the half offsety is the
velocity of the medium, ant, = 2h/v is the horizontal two-way traveltime between shot and
midpoint. Figure (12) is a plot of the time spread as a function of NMO time. An interesting
feature of these curves is that the time spread of the impulse responses never gxgeeds

whereu is
G-1 _ 1++/5
=G —=——=) ~.300283106 th G . 9
0 (G+1> ;Wi 5 9)




SEP-80 Fast & precise DMO 15

KO

S
—

Figure 11: The top-most drawing rep-
resents the elliptic dip-limited DMO
operator. | assume that the offset
line bisects thex- andy- axes on the
Earth’s surface. Below, the two grids
represent the data layout inside the
processors. Each processor contains
a time slice of data. Processor 1 con- ®
tains the time slice at =ty and per- /1
forms the data communication across
the (x,y) space that corresponds to > Time t
a vertical shift fromtg to t;. Dur- Y 1
ing this time, processor 2 performs
the same kind of operation for a ver-
tical shift fromt; to t,. Then, pro-
cessor 1 sums its output in the out- Data Communication
put volume and communicates its in-
put to processor 2. The action is then o
repeated, moving the data across the
(X, y) space for a vertical shift frory / Processor 2

to to. | patrick-tspro¢[NR] ®
Time t

/ 2

Processor 1

Figure 12: Time spread of the im-
pulse responses of DMO as a func-
tion of the impulse locationt,. The
maximum time spread occurs for the | jpatrick/./Fig/magic.pdf
input timet, = tm/+/G where G is the
golden number. Click on the follow-
ing button to see the curve for differ-
ent times.
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Becausdy, is limited by the maximum offset, the time spread is much shorter than the full
trace length. During the process, the time slices are shifted upward until they reach the max-
imum time spread. Of course, only the time slice corresponding to the maximum time spread
will have to be processed all the way. Other time slices, like for exatpie5 seconds
(Figure (12)), will be processed for the first .1 second and then pass through idle processors.
Obviously, the later time slices require less processing than the earlier ones, and thus represent
a waste of processing capacity. The following formula gives the load balance as a function of
trace length:

Loadfm) = — f A (10)
0

tmax Atmax
This formula is derived from the two following observations. The time for which the proces-
sors are active is proportional to the area under the curve represettitjgn Figure (12),
[ At(t)dt. The total computation time is proportional to both the trace length and the maxi-
mum time shiftthaxAtmax. The computer load is then the ratio of the effective working time
to the total execution time, as expressed in equation (10). As an example, for a trace length
of 4 seconds and a midpoint tinig = 1 second, the load balance reaches seventy percent
(Figure (13)). This algorithm allows a more efficient distribution of work between processors

Figure 13: Load balance as a func-
tion of the trace length. The optimal
load balance of eighty percent corre-
sponds to a trace length which is a
function ofty, (= 2h/v). The bigger
tm is, the later the load balance is op-
timal. Click on the following button
to see a movie of the load balance for
different values of,,.

..Ipatrick/./Fig/integ.pdf

than the spiral trace processing described earlier. | implemented this algorithm for a two-
dimensional model (Figure (14) is an output of the program) but the run time is similar to a
serial implementation of DMO (in 2-D, trace processing is more straightforward than time-
slice spreading). However, the real advantage of the method will appear in processing 3-D
land data.

The pyramid as an anti-aliasing structure

Applying DMO in time slices assures that the operator will not introduce spatial aliasing in the
data. However, the spatial spreading from one time slice to the next must never exceed the bin
spacing or temporal aliasing will occur, especially for the gentle dips of the operator (Hale,
1991). A technique described by Claerbout (1992) prevents operator aliasing. The method
consists of the convolution of the operator with triangles whose width depends on the dip of



SEP-80 Fast & precise DMO 17

the operator as described previously. However, this process differs from the trace-oriented
process in that the convolution is applied horizontally in the time slices. Figure (14) shows
the DMO response of several impulses corrected with anti-aliasing triangles. In three dimen-

Figure 14: Impulse responses of
DMO applied to time slices. The anti
aliasing triangles are wide at gentle
dips and shrink towards the steepest
dips.

..Ipatrick/./Fig/res.pdf

sions, the triangles cannot be directly obtained by Claerbout’s double integration technigue.
Instead, a similar method leads to the construction of pyramids in a three-dimensional exten-
sion of the concept of the triangle. Figure (15) shows how to decompose the construction of a
pyramid. The pyramids cause a lateral expansion of the operator that does not agree with the
theoretical ellipse of dip moveout. However, the operator has a cross-line component when
we consider variable velocity or transversely isotropic media. Gonzalez (1992) showed that
the three-dimensional DMO operator in the cross-line direction may curve either downward
when the velocity increases with depth or upward when the velocity increases with angle in a
transversely isotropic medium. In both cases, the first derivative of the operator with respect
to the cross-line coordinate vanishes on the in-line axis. Therefore, the horizontal expansion
caused by the pyramids is a first-order approximation of the operator.

Conclusion

Because constant-velocity DMO in a 3-D Earth model operates along curves, care must be
taken in parallel implementation in order to avoid the waste of computational capacity. Trace
processing algorithms require a great deal of inter-processor communications and leave many
processors idle during the process. On the other hand, the processing of time slices is well
adapted to the irregular geometry of 3-D land data, attaining a load balance of eighty percent.
Although the anti-aliasing convolution is more quickly performed along traces, the efficient
use of computational capacity compensates for a slower convolution in the time slices. Un-
fortunately, the three-dimensional implementation of the time-slice algorithm has not been
tested on real data. Doing so would tell us whether the lateral expansion of the operator is an
undesirable artifact or a step toward the variable-velocity assumption.
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Figure 15: Decomposition of the

method for building pyramids. All "
lines are equivalent: a pyramid func- WA
tion is the convolution of two box ’ 7h. v -

functions (line 1 to 2); a box function
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Ay and can be applied only once af- ) E )

ter all convolutions are performed.
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Chapter 2

Part Il: Attaining accuracy with
depth-variable velocity dip moveout

Nowadays, a standard industrial seismic processing almost always involves the constant-
velocity dip moveout correction. Two main features make the process attractive. First, the
computational cost is low compared to prestack migration in both two-dimensional and three-
dimensional processings. Secondly, because constant-velocity dip moveout is “independent
of velocity”, it may come before velocity analysis, removing the effects of dip (Forel and
Gardner, 1988). However, the hypothesis of constant velocity is somewhat inconsistent with
the concept of velocity analysis which results in the construction of a depth-variable velocity
model. Recently, several methods for depth-variable velocity dip moveout (Godfrey, 1992;
Artley, 1992; Meinardus and Schleicher, 1993) undeniably improved the zero-offset stack sec-
tion. However, one can wonder if they clearly improve the result of the post-stack migrated
section.

HOW VARIABLE VELOCITY DIP MOVEOUT IMPROVES POST-STACK
MIGRATION

In this section | show that the depth-variable velocity dip moveout strongly differs from the
constant-velocity dip moveout not by the shape of the operator (although the operator is
squeezed horizontally when the velocity increases with depth (Hale, 1983b; Artley, 1992))
but by the amplitude distribution along the operator. In the second section, a synthetic data
example shows how the processing flow NM() DMO-post-stack migration is comparable

to pre-stack migration.

19
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Some amplitude issues

Jakubowicz (1990) gave an elegant formulationfcef k dip moveout where a finite number
of dips are processed separately and stacked according to equation (1),

Pomo = Z AD; Pp,, (1)
i

wherePp;, is the wavefield, NMO-corrected for a single dip, and A D; is the width of the
dip-range surroundin@;. Obviously, if the dip sampling is irregular, the dip-decomposed
wavefields stack with a different weight. Beasley (1988) derived an amplitude scheme for
Kirchhoff dip moveout from Jakubowicz’s weighting by using the following practical approx-
imation: X
9to

AD;j ~ WAX. (2)
To the first order, the amplitude along the dip moveout operator is proportional to its time cur-
vature. This approximation is close to the amplitude scheme mathematically derived by Black
et al. (1993) from (f,k) dip moveout (Blondel, 1993). Thus, Jacubowicz’s dip moveout by
dip-decomposition, Black’s Kirchhoff dip moveout, anfl, k) dip moveout have a very sim-
ilar amplitude distribution. In the general case of depth-variable velocity, there is no analytic
expression of the amplitude along the operator but the dip-decomposition method gives us a
gualitative idea. Indeed, the operator of variable-velocity dip moveout may be build point by
point for a range of dips regularly sampled. Then, a region where the points are close to each
other allows a significant stack of the dipping segments of the operator, and thus corresponds
to an area of high amplitude. Figure (2) shows an impulse response of dip moveout in a time-
variable velocity model whose profile is represented in Figure (1). Artley’s (18@2)dip

Figure 1: Interval velocity model. ~[patrickl/Figivel.pdf

moveout method which produced Figure (2), requires a non-linear inversion x#asgistem

of equations for each time, offset, and dip we consider. Though it is a time consuming pro-
cess, it provides us with amplitude information. First, the triplication of the impulse response
have a low energy for this velocity model (a trough in the velocity profile would show a high
amplitude triplication). Secondly, the amplitude varies a lot along the operator, starting high
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..Ipatrick/./Fig/imprs.pdf

Figure 2: Impulse response ofz) 2-D DMO for an offset of .8 km and a total two-way trav-
eltime of 1. s. The stars along the operator correspond to a uniform sampling of dips. The
denser are the points, the higher is the amplitude of the operator. The dashed line represents
the elliptic support of the constant-velocity DMO impulse response for the same offset and
traveltime. Both the solid and dashed lines have a similar shape in the region of high ampli-
tudes, differing only by the triplications along the solid line. The unrealistic points beyond the
offset show that there is a problem of convergence ob{aeDMO algorithm for steep dips.
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at gentle dips, decreasing, and increasing again just before a triplication. The shage)of a
DMO operator differs from the constant-velocity DMO operator essentially by a number of
triplications along its branches (Figure (2)). However, since these triplications are generally
low-amplitude, the shape is not the most discriminative feature of the operator. The amplitude
variations along the operator strongly depend on the velocity model, and therefore play an
important role in the dip moveout correction.

Comparison with constant-velocity dip moveout

There is no doubt that replacing the constant-velocity dip moveout step by a variable-velocity
dip moveout step improves the zero-offset section after stack. However, the final result of a
standard processing flow is the post-stack migrated section. Thus, the idea of comparing the
pre-stack migrated section to the post-stack migrated sections with and without the constant
velocity assumption is natural. David Lumley provided the synthetic data example that appears
in the next three figures. This synthetic model includes four diffractors at various depth and
midpoint positions, two horizontal events, and a 45-degree dipping event, overlaid by a strong,
constant RMS-velocity gradienvé'fvlms/s) = 1.5+ 2.7®)). Results of constant-velocity DMO
The processing flow involving a constant-velocity dip moveout step is displayed in Fig-

ure (3). The three deepest diffractors are unfocused whereas the shallow diffractor is focused
but low-amplitude. The horizontal reflectors are well imaged but the dipping event has a lower
amplitude than expected though it is not mispositionBesults of approximate variable-

..Ipatrick/./Fig/cvmig.pdf

Figure 3: Post-stack migrated section after NMO, constant-velocity DMO and stack. The
deepest diffractors are unfocused and the dipping event is low-amplitude.

velocity DMO
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Castle (1993) proposes a method conceptually similar to Hale’s squeezed dip moveout
operator (1983b; 1993) but different in its implementation. Instead of applying a standard
normal moveout correctiort{ = t? — x2/v3,,s) followed by a dip moveout correction with
a squeezed operator, the method uses de Bazelaire’s (1988) normal moveout correction with

shifted hyperbolae:
2

X
té:(t—tn+tp)2—¥, 3)

wheret, =t,/S, v2 = Su,, S is the squeezing factor given By= M4/M§, anduy is the order-
k momentum [, = v%MS). Castle shows that applying the constant-velocity dip moveout
operator in the, time domain and then shifting back the data according to the equation

is equivalent to squeezing the dip moveout operator. Both methods approximate the exact
dip moveout operator for depth-variable velocity by wiping out the triplication apparent in
Figure (2). Figure (4) results from post-stack migration after the approximate dip moveout
step. The four diffractor points are better focused with this flow than with the flow that in-
volves constant-velocity dip moveout. Unfortunately, the method, apart from approximating
the shape, also simplifies the amplitude distribution along the operator. The dull appearance
of the reflectors is a consequence of this improper handling of the amplitudes.

distance (km)
0 1 2 3 4

8°0 70

(08s) swin

a1

squiz DMO + Post—stack migration

Figure 4: Post-stack migrated section after NMO, approximate variable-velocity DMO and
stack. The diffractors and the dipping event are better focused than in Figure (3) but have

unbalanced amplitudegpatrick-svmig [ER]
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Result of variable-velocity DMO

For this processing flow, | use the variable-velocity DMO algorithm developed by Art-
ley (1992). The method, accurate for any depth-variable velocity media, solves a system of
equation accounting for the location and the dip of any reflector point. An extension of this
system to three dimensions is proposed in the next section (page 25). The similarity between
the pre-stack migration (Figure (6)) and the post-stack migration after depth-variable velocity
dip moveout Figure (5) is not surprising because the two processing are equivalent when there
is no lateral velocity variation. However, the clear improvement with respect to the standard
processing makes the variable-velocity dip moveout a very useful tool.

.Ipatrick/./Fig/vvmig.pdf

Figure 5: Post-stack migrated section after NMO, exact variable-velocity DMO and stack.
The diffractors and the dipping event are well imaged.

Conclusion

The main difference between constant-velocity and variable-velocity dip moveout is not the
shape of the operator but the amplitude distribution. Because this distribution highly depends
on the velocity model, variable-velocity dip moveout considerably improves the post-stack
migration. However, the drawback is its high computational cost. For example, Artley’s
method is more costly than a pre-stack migration, because the algorithm does much more than
compute the zero-offset traveltime: it performs a ray-based pre-stack migration and uses the
computed zero-offset traveltime to apply the dip moveout correction. Because both Meinar-
dus’s and Artley’s algorithms are based on the dip-decomposition idea, it is possible to reduce
the computational cost by cutting down the number of dips to process. On the other hand,
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..Ipatrick/./Fig/psmig.pdf

Figure 6: Pre-stack migration. Click on the following button to see a movie of the four previ-
ous pictures.

Castle’s method differs from the constant-velocity dip moveout flow by involving an extra
time-variable shift of the data. At a small additional computational cost, the approximate
dip moveout flow improves the quality of imaging after post-stack migration. Furthermore,
this method can be adapted in three dimensions by using the constant-velocity algorithm de-
scribed in the first part (page 14). Apart from all speed considerations, a precise dip moveout
method requires both assumptions of a depth-variable velocity and a three-dimensional model.
The next section explains how Artley’s two-dimensional depth-variable velocity dip moveout
method (1992) can be extended to three dimensions.

EQUATIONS FOR THREE-DIMENSIONAL DIP MOVEOUT
IN DEPTH-VARIABLE VELOCITY MEDIA

Artley (1992) introduced an original method to perfowfa) dip moveout in a two-dimensional

earth model. The process uses ray tracing tables and solves a system of equations accounting
for the location and the dip of the reflection point. This section describes an extension of
Artley’s method and derives a new set of equations for the 3-D case.
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The ray parameter in three dimensions

In a two-dimensional earth model, the ray parameter is given at any point of the ray by the
relationship _

p="7, ©)

v

whereé is the inclination of the ray path with respect to the vertical axis amslthe local
velocity. We can see that the ray parameter is simply the projection length of the ray path
vectorr (J|r]| =r = 1/v) on the earth surface. In a 3-D v(z) model of the earth, the rays travel
in a vertical plane. In this case, the ray parameter, being the projection of the ray path vector,

is a two-dimensional vector that can be expressed in either cartesian or polar coordinates, as

follows:
o Px ) COs¢
o= (o )=r (5 ) ©

whereg is the strike of the vertical plane containing the ray gné ./ p2 + p§.

Deriving the system of equations

Vectorial relationships on the earth’s surface

In the triangle P SQ in Figure (7), the following expression relates the horizontal travel-
ing of the source and geophone rays with the offset:

SG=SP+ PG. @)

The vectors?S and P_é are related to the table that gives the lateral distance traveled by the
ray as a function of the ray parameter and the travel tiffp,t):. The projection on the
earth’s surface of a ray path (of paramepeand traveltime) is the 2-D vectoE(p,t)%. Thus,
relation (7) yields

Xg—Xs = £(Pg o) 2L — £ (ps, ) ==, ()
Pg Ps
wherexs andxg are the 2-D vectors of the source and geophone coordinates.

A second relation expresses the coordinates of the point of emergence of the zero-offset
ray, E. In the triangle P E M), we have :

ME=MP + PE. 9)

Again, the vectorPHE is related to the table of lateral distance§p,t), yielding

1 :
o= =3 (£t +£(ps )5 ) +£(p0t0) 2 (10)

wherexg is the 2-D vector of the emergence point coordinaf€sne relationships in the

1The ray tracing tables are fully described in Artley (1992)
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Figure 7. Three-dimensional view of the source, receiver, and reflection points for 3-D v(z)
DMO. The dashed lines represent the ray paths in the earth, and the bold solid lines represent
the distances on the surface of the e4@mrick-Rayp3qi[N R]

earth’s interior

The following obvious equation relates the traveltimes along the ray paths to source and
geophonets andtg, to the given total traveltimig:

We can also state two more equations to account for the fact that the three ray paths,
namely the zero-offset, source, and geophone ray paths, end at the same point ilRplepth (

7(Po,to) = 7(Ps,ts) = T(Pg, tg), (12)

wheret(p,t) is the table of vertical traveltime3.he relationship between the ray pathsAt

the reflector pointR, the ray must obey Snell’'s law. In other words, the angle of incidence
must equal the angle of reflection. In terms of ray paths$ixes the position of the reflection
plane, and s andr 4 account for the angles of incidence and reflection. Smandrgy have
equal lengths v, Snell’'s law can be expressed in the following vectorial form:

ro=A(rs+rg), (13)

where is a coefficient of proportionality. The first two coordinates are the ray parameter
components, which have the following relation:

Po = A(Ps+Pg)- (14)
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The third coordinate of the ray path vectors can be expressed as a function of the inclination
angle and the vector length/d, as follows:
o cosf(p,t)

z

(15)
v

wheref(p,t) is the table of angles along a ray of paramgiend timet. Then, after simpli-
fication of the Yv factors (the velocity is the same for all rays at the reflector point), the third
equation of relation (13) becomes

cost(po, to) = A(COH(Ps, ts) + COH (g, tg))- (16)

Substituting equation (16) into relation (14), we can eliminate the proportionality fadtor
obtain the following relation:

Po (cosA(Ps, ts) + cos9(Pg, tg)) = (Ps + Pg) COSH(Po, to)- (17)

Sets of equations and unknown®ur system of equations is constituted by collecting rela-
tions (8), (10), (11), (12), and (17):

S(pgig)z—g_é(ps,ts)ﬁ = Xg —Xs
£(P010)22 — 3 (§(Ps 1) +(pg 1)) = Xo
) ts+1g = tsg . (18)
7(Po, to) = 7(Ps,ts)
7(Po, to) = 7(pPg.tg)
Po (COSH(Ps, ts) -+ COSH( Py, tg)) = (Ps+Pg)cosd(po,to)

Because the and p vectors are two-dimensional, the first, second, and sixth relations of
system (18) give X 2 equations, yielding a set of nine equations. The unknownggre
Pg, ts, tg, to, andXo. As described in the preamble, thevectors have only two unknown
parameterspy and py (or p and¢). Similarly, Xo is a two-dimensional unknown vector.
Therefore, system (18) relates nine unknowns with the known paranpgtets, Xs, Xg, and

the ray tracing tables(p,t), 7(p,t), andd(p,t). Solving the system

The second relation of system (18) can be isolated because it simply adds two relations
and two unknowns (the coordinatesqgj. Similarly, the third equation can be substituted into
the others by replacing (or tg) with tsg—tg (Or tsg—ts).

Thus, we obtain a reduced system of four relations (six equations):

f(pgytg)%g_é(ps,tsg—tg)% = Xg — Xs
7(Po. o) = (psitsg—tg) (19)
7(Po, to) = (Pg, tg)

Po (COSH(Ps, tsg—tg) +COH(Pg,tg)) = (Ps+ Pg)cOSH(Po,to)

and two additional relations to compute the remaining unknowns:

Po 1( Ps pg)
= ,t —_— = = S!tS_ 1t 20
Xo = &(po o)IOO > £(p )ps+$(pg g)pg (20)
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ts == tsg—tg. (21)

The six unknowns of system (19) agg ty (or ts), ps [including the two unknownsyiys, pys)

or (ps,¢s)], and pg [(Pxg: Pyg) OF (Pg,¢g)]. The parameters argg, po [including the two
parameters ffxo, Pyo) Or (Po,¢0)l, Xs, andXq. This system, like its 2-D counterpart, can be
solved using the Newton-Raphson algorithm (Press et al., 1986).

Agreement with the equations in two dimensions

The 2-D system derived by Artley (1992) is a set of four equations with four unknowns. It can
be retrieved by replacing the vectorial ray parameters with their scalar form (since the vectors
are now in a common plane). The first relation of system (18) then becomes

£(Pgtg) — &(Ps,tsg—tg) = 2h, (22)
whereh is the half offset. The fourth relation becomes

sind(ps,ts) N siné)(pg,tg)>
v

sin@(vpo, to) ( cosf(po,to) (23)

cos@(ps,ts)+cose(pg,tg)) = (
and can be simplified to

sin@(po, to) — &(ps, ts)) = sin@(pPg, tg) — &(Po, to))- (24)

Finally, we obtain the bisection condition as shown by Artley (1992), as follows:

6(po,to) = %[Q(ps,ts)‘F@(pg,tg)]- (25)

Conclusion

We? derived a set of equations that constrains the travel path of a ray in a three-dimensional
earth model with a depth-variable velocity. This system can be solved for the zero-offset
traveltime and the emergence point of the ray, yielding an efficient method for dip moveout
processing. A successful implementation of the equations have been realized by Artley at the
Colorado School of Mines, showing the expected saddle-like impulse response.

CONCLUSIONS

The dip moveout correction requires important compromises between speed and precision in
two- and three-dimensional models. The conclusions to part | (page 17) propose ways of
increasing the speed. The constant-velocity assumption allows the dip moveout process to
be fast in both two- and three-dimensional model geometries. Some additional attributes of

2Werefers to the co-authors of the paper (Artley et al., 1993)
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the operator, such as weighting and anti-aliasing schemes, reduce the amplitude artifacts in
a computationally efficient manner. Moreover, parallel computing can speed up the process
even in the case of three-dimensional land data where the acquisition geometry is irregular.
A parallel implementation of integral dip moveout in time slices proves efficient for irregular
azimuthal distribution of the data. The second part of this paper proposes two ways of im-
proving precision. The first is to apply a proper weight along the operator, which is achieved
at almost no extra computational cost. The second way is to consider depth-variable velocity.
The dip moveout correction then becomes computationally expensive. However, an approxi-
mation valid for gently dipping reflectors allows the variable-velocity process to be almost as
fast as the constant-velocity process. Aside from the considerations of speed, the method of
three-dimensional dip moveout in depth-variable velocity developed in the last section may
considerably improve the imaging of complex data structures. Throughout my analysis of
the dip moveout correction, | have tried to optimize both speed and precision. Unfortunately,
the very fast methods prove inaccurate, whereas the very precise ones are slow. The approx-
imate methods related to the squeezing of the dip moveout operator turn out to be fast and
rather precise, even in three dimensions. This result suggests a method for three-dimensional
dip moveout processing: the operator with limited cross-line extension that | introduced in
the first part can be squeezed, yielding a first-order approximation of the theoretic “saddle”
operator.
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