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Stolt without artifacts? — dropping the Jacobian

Stewart A. Levin1

ABSTRACT

In recent SEP articles (Popovici et al., 1993; Lin et al., 1993; Blondel and Muir, 1993)
the SEP “in-time” group derived and tested a Stolt migration and modeling method that
employed the discrete Fourier transform (DFT) for nonuniform spacing, theslow Fourier
transform, to avoid interpolation artifacts. In an attempt to better evaluate their work, this
paper approaches the subject afresh, first considering a change of variables in a continuous
integral and its relation to discrete theory and matrix adjoints. Along the way, I spin off yet
another Stolt migration method that permits one to still employ the fast Fourier transform
(FFT) and avoid (traditional) interpolation, and that does not require any Jacobian scaling.
Finally, I return to the DFT-based method and conclude that, under classical assumptions
of geophysical time series analysis, the alternate interpolation it implies is indeed more
correct than the sinc interpolation Harlan (1982) recommends.

INTRODUCTION

Artifacts in Stolt migration are easily recognizable by their global appearance. This is because
the method works in the F-K domain — local errors in F-K are transformed into global errors
in T-X. The source of most such artifacts arises from the choice of interpolation method used
for the Stolt mapping in the F-K space. It is therefore important to understand this mapping or
change of variable thoroughly. Consider the integral∫ b

a
f (x)dx (1)

of a function f of a real variablex. Using elementary calculus, ifx is a monotonic function
of y, we can change variables in the integral toy, as follows∫ b̃

ã
f̃ (y)

dx

dy
dy , (2)

where f̃ (y) ≡ f (x(y)). The derivativedx
dy of the change of variables is called theJacobianof

the transformationx → y. It has a geometric interpretation in terms of lengths and area (or
mass). Figure 1 represents the functionf (x) over some small interval of length1x. The area
under its graph is then approximatelyf (x)1x. After the change of variables toy, the function
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Figure 1: Change of variable fromx → y for continuous integration.

f̃ (y) has the same height asf (x), but the width of the small interval is now1y ≈ 1x dy/dx.
In order to preserve the area under the original graph off (x), we need to rescalẽf (y) by the
reciprocal of the interval scalingdy/dx. Let us consider now a discrete or sampled function
modeled in the continuous domain as a set of point masses (Dirac delta functions) at discrete
intervals as in Fig. 2. A change of variablex → y on the interval [a,b] moves each of the
point masses to a corresponding location in the interval [ã,b̃]. Integration, that is, summing
the point masses, produces the same total mass in both settingswithout the need to rescale
by the Jacobian.2 The world of seismic recording lies between these two cases. On the one
hand, the earth’s response is essentially continuous. On the other hand, our recordings, being
digital, are either assumed or forced to be band-limited. The band-limited assumption requires
us to replace the (infinite-bandwidth) point impulses with their band-limited equivalents: sinc
functions. The sections that follow explain how to apply both analogues of integration to the
method of Stolt migration and explore their consequences.

STOLT MIGRATION — CONTINUOUS AND DISCRETE

Stolt migration (Stolt, 1978) is based upon the constant-velocity imaging formula

M(kx,τ ) =
1

2π

∫
∞

−∞

ei τkτ P(kx,ω)dω , (3)

2Harlan uses the formulaδ( f (x)) =
∑∣∣ f ′(xn)

∣∣−1
δ(xn), wherexn are the zeros off (x), thus including the

Jacobian. This formulation is also correct because of the distinction between shifting and change of variable.
See Appendix A for a detailed discussion.
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Figure 2: Change of variable fromx → y for discrete integration.

whereω is temporal frequency,τ is vertical traveltime,kx is spatial wavenumber, andkτ is
given by the dispersion relation

kτ = sgn(ω)
√

ω2 −v2k2
x , (4)

which characterizes one-way wave propagation in a medium with constant velocityv. Stolt’s
fast migration method changes the variable of integration in equation?? from ω → kτ , turning
it into the inverse Fourier transform

M(kx,τ ) =
1

2π

∫
∞

−∞

ei τkτ P̃(kx,kτ )dkτ (5)

with

P̃(kx,kτ ) ≡ P(kx,ω(kτ ))
dω

dkτ

. (6)

It is noteworthy that the Stolt equation?? differs from the earlier phase-shift equation?? in
that it images without evanescent energy (Stolt, 1984). From equation??we find thatdω/dkτ

= kτ/ω. For discrete data, we first limit the continuous integral?? to the temporal frequency
band [−π/1t ,π/1t ]. Then we use a discrete Fourier transform to evaluate the integral for our
digital data. The change of variableω → kτ in ?? then calls for some interpolation in order to
use the fast Fourier transform. Modulated-sinc interpolation has been shown to be appropriate
for this purpose (Harlan, 1982).
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Band-limited spikes

Instead of interpolating between discretely sampled values ofω, let us apply a band-limited
version of point-mass remapping in the Stolt integral. Each sample of the digital series repre-
sents a circularly-wrapped sinc function centered about that sample. Following the point-mass
recipe for a change of variablex → y discussed in the introduction, each such sinc function at
a pointx should be shifted up or down to the new locationy. Adding them all together (at the
discrete sample points) produces the uniformly sampled integrand without recourse to Jaco-
bian rescaling. This is then the promised Stolt migration method: replace each inputP(kx,ω)
sample with a corresponding (tapered) sinc function centered at the output location (kx,kτ )
and then apply an inverse 2-D fast Fourier transform.

Matrix formalism

Let us see what this Stolt variant looks like in matrix form. Treatingkx as a parameter, we can
represent Stolt migration as a matrix mapping of input temporal frequencyω to output verti-
cal wavenumberkτ in which the nonzero coefficients are concentrated about the hyperbolic
trajectory implied by equation??. Claerbout (1985) illustrates related mappings in normal
moveout correction. The band-limited spike method tells us to place a sinc function vertically
in each column of the matrix centered about thekτ corresponding to that column’s value of
ω, as illustrated in Figure 3. Conventional Stolt migration has us place an appropriate sinc
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Figure 3: Matrix representation of the new Stolt migration method, placing sinc functions in
each column along the NMO trajectory.stew1-newmigmatrix[NR]

function in each row of the matrix at theω corresponding to that row’skτ and then scale the
row by the Jacobiankτ/ω, as sketched in Figure 4.
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Figure 4: Matrix representation of the conventional Stolt migration method, placing sinc func-
tions in each row along the NMO trajectory and scaling each row by thekτ/ω Jacobian.
stew1-oldmigmatrix[NR]

DISCUSSION

We have now approached discrete Stolt migration from a number of perspectives. How dif-
ferent are the results? To answer this, I have reprinted the following table from Levin (1986)
attributed to Harlan (1983):

Operator Transpose
Migration NMO cosθ INMO
Diffraction INMO secθ NMO

(7)

whereNMO represents the Stolt frequency downshiftω → kτ and cosθ is the Jacobian ratio
kτ/ω. INMO is the inverseNMO that zero fills the evanescent region. Notice that Harlan’s mi-
gration definition is just what we have described as the matrix representation of conventional
Stolt migration — each row is someNMO remapping plus a Jacobian scaling. Its transpose,
more properly its adjoint, is also a remapping (INMO) and does not have any separate rescal-
ing. Our new Stolt migration is indeedINMOT , equivalent, therefore, to conventional Stolt
migration in the continuous limit. To verify this, one notes that the rows ofINMO are sinc
functions centered at thekτ corresponding to the row’s value ofω. Our variant Stolt migration
places sinc functions centered at thekτ corresponding to the column’s value ofω and hence
is the adjoint of Harlan’s adjoint to Stolt migration and therefore is Stolt migration. Further,
this formulation is modestly superior to conventional Stolt migration because it does not have
to apply a Jacobian scaling. This is not because of the trivial potential savings of one less
multiplication in the algorithm. It is because the new equation requires discretization of only
the continuous change of frequency variable given by equation??, whereas the conventional
method also discretizes the derivative of the change of variable.
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Fast or slow transform?

In SEP-79, the in-time group (op. cit.) derived and tested Stolt migration by the slow Fourier
transform. With this method, the functioñP(kx,kτ ) is computed by evaluating the discrete
Fourier transform ofP(kx,ω) directly atω(kτ ) instead of interpolating from the uniformly
spaced output of the FFT. Is this approach really better? To analyze the difference between the
two methods, I will start from the usual assumption of geophysical time series analysis that our
data is a digitized version of a band-limited continuous function. (Figure 5.) More specifically,
we apply, in either order, a time window and a uniform sampling to the signal. The time win-
dowing convolves the spectrum with the sinc function transform of the windowing function,
producing leakage outside the original frequency band. (Figure 6.) The effect of sampling is
then to convolve the spectrum with a comb, replicating a folded copy of the spectrum peri-
odically. (Figure 7.) If we performed the two commutative operations in reverse order, then
sampling would replicate the original band-limited spectrum, and windowing would convolve
with the sinc function. The spectrum, of course, remains periodic, but may be modified by
leakage or wraparound in the convolution. Note that a band-limited impulse in the continu-

Time

Frequency

Continuous Bandlimited Signal

Figure 5: Continuous band-limited signal to be processed.stew1-SEP-sem01[NR]

ous time function is a sinc function. If we sample the sinc function at its peak, the remaining
samples are at zero crossings and its digitized representation is a single spike. If we sample it
off its peak, we encounter nonzero sidelobes in the time series. First, let us consider shifting
the original continuous-time function byT and then sampling. Using Fourier transform the-
ory, this is accomplished by multiplying the spectrum byei ωT and then convolving with the
sampling comb. (Figures 8 and 9.) If, on the other hand, we digitize first and then multiply the
spectrum byei ωT , we will not get the correct result. (Figure 10.) In fact we only obtain the
correct result whenei ωT has the same periodicity as the spectrum, that is, whenT is an integral
number of sample periods. The proper thing to do in the spectral domain is to multiply the
Fourier transform of the discrete data by a replicated copy ofei ωT over the fundamental band.
This is then discrete convolution in the temporal domain with a sampled version of a shifted
sinc function, in other words, sinc interpolation. Figure 11 summarizes the two flows we have
just compared. We now turn from the time to the frequency domain and consider shifting
the Fourier transform of a band-limited function by�. Again Fourier transform theory says
to multiply by an exponential, this time bye−i �t in the temporal domain. Sampling, that is,



SEP–80 Dropping the Jacobian 7

Time

Frequency

Apply time window

Convolve with transform of windowing function

Frequency
*

Frequency

=

Figure 6: Windowing the continuous band-limited signal of Figure 5.stew1-SEP-sem02
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Figure 7: Sampling of the time-windowed signal of Figure 6.stew1-SEP-sem03[NR]
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Figure 8: Time shift of a continuous band-limited signal.stew1-SEP-sem05[NR]
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Figure 9: Sampling after the time shift of the continuous signal in Figure 8.
stew1-SEP-sem06[NR]
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Figure 10: Time shift of the sampled signal for comparison with Figure 9.stew1-SEP-sem04
[NR]
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Figure 11: Shifting and discretizing on the time axis.
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multiplying by a comb, commutes with the shifting exponential. Thus we can view the Fourier
domain result either as a periodic replication of a shifted copy of the original spectrum or as a
shifting of the periodically replicated band-limited spectrum. (Figure 12.) In Stolt migration,
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Shift by Ω

Time

Figure 12: Frequency shift of a sampled signal. The sampling and shifting commute.
stew1-SEP-sem08[NR]

our aim is to apply the NMO mapping of equation?? in the Fourier domain. Thus we need
to shift the Fourier transform. Therefore, the proper prescription is multiplication of the sam-
pled time series bye−i �t followed by Fourier transformation. This is what the in-time group
has advocated — evaluating the discrete Fourier transform (DFT) atω − �. The frequency
domain equivalent is convolution with the Fourier transform of the sampled functione−i �t .
Popoviciet al. (1993) give a formula for this in terms of the fast Fourier transform (FFT) of
the original function. The discussion is not, however, complete until we include the effect of
sampling on the frequency axis, i.e. using the inverse FFT algorithm. The general theory says
this operation is multiplication by a comb function and hence is equivalent to convolving with
a comb back in the time domain. The convolution has the effect of periodically replicating the
outputtime series, a result of no consequence to us. (Figure 13.) The procedure has only one
flaw: using the discrete Fourier transform to compute the sinusoidal components of the input
time series for an arbitrary frequency. The inverse DFT is asynthesisoperator; only under
special conditions is it also the inverse of ananalysisoperator. That is, the DFT itself does
not necessarily produce an exact representation of its input in terms of sinusoidal components.
The interpolation formula the in-time group really wants to use is derived from

[DFT−1]∗[F FT−1] (8)

and results in an implicitly-defined interpolation scheme in which the complex conjugate of
their coefficients applied to the output of the Stolt mapping will produce the FFT’ed input to
the Stolt mapping. On the other hand, if we apply the same idea to the input-oriented Stolt
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Figure 13: Sampling the spectrum replicates on the time axis.stew1-SEP-sem12[NR]

mapping I have proposed, the interpolation is based on

[F FT ][ DFT ]∗ (9)

and results in the conjugate coefficients being applied to the input to the Stolt mapping. So far
I have been unsuccessful in tracking down a name in the literature for this interpolation.

CONCLUSIONS

I have described another correct variant of Stolt migration with interesting features. This
method is implicit in Harlan’s earlier work (Harlan, 1983). Like conventional Stolt migration,
it sandwiches a frequency domain change of variable between fast Fourier transforms. Unlike
conventional Stolt migration, it does not impose a Jacobian rescaling after frequency domain
interpolation. I have further compared the Fourier domain interpolation schemes proposed in
(Harlan, 1982) and (Popovici et al., 1993) and determined the latter as the more appropriate
one to use, albeit not perfect.
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APPENDIX A

AN EXPLICATION OF NMO

As usual, it was about two years after Jon Claerbout published an idea (Claerbout, 1992) that
I grasped its true significance. In section 5.3 of PVI, Jon notes that NMO is a linear mapping
and distinguishes between looping over input and output space for numerical implementation.
Let us first return to the example given in the introduction of monotonic remapping of point
masses. There I argued that the change of variable in this case uses no Jacobian to compensate
for loss of mass, unlike continuous integration. If we model this remapping as integration
againstδ-functions, the result is given as the limit asε → 0 of integration against test functions,
δε, of width ε and unit area. In this case we write

b∑
a

f (xj ) = lim
ε→0

∫ b

a

∑
δε(x − xj ) f (x)dx . (A-1)

Changing variable fromx → y, converts the formula to

b̃∑
ã

f̃ (yj ) = lim
ε→0

∫ b̃

ã

∑
δε(y− yj ) f̃ (y)

dx

dy
dy . (A-2)

Comparing equation??with ??, reveals that

δ(y(x)) =
δ(x − y−1(0))

y′(y−1(0))
, (A-3)

which informally means that one should rescale by the Jacobian of the mapping. This prescrip-
tion agrees with Harlan’s discussion (1983) of linear properties of migration and diffraction.
Common sense tells us, however, that all this rigamarole is aimed toward one goal — to pre-
serve mass under change of variable. How then is this apparently contradictory conclusion
reconciled with our simple, mass-preserving, point mass remapping? The answer lies in the
difference betweenshifting anddistorting. To understand this distinction, we need to take a
first look at input versus output-oriented processing. In our simple approach, we take each
input point mass and place it in its corresponding output location. More precisely, we shift it
up or down to its output location. Since shifting is an area preserving, invertible operation, no
Jacobian is involved. This is input-oriented processing. In the change of variable approach,
we reach back from each output locationy(x) and grab the corresponding input samplef (x).
Doing so distorts the input by local stretching or squeezing, requiring us to correct the distor-
tion by Jacobian rescaling. Following Claerbout, let us now look at these two approaches in a
discrete matrix representation. Assume that sampling is sufficiently fine that nearest-neighbor
interpolation suffices. In the input-oriented approach, each input sample corresponds to a col-
umn in the matrix containing a single 1 at the output index to which we want to shift the input
sample. In the output-oriented formulation, each output sample corresponds to a row of the
matrix containing a single 1 at the appropriate input index. Both of these mappings have
problems: one when the NMO curve is flat and the other when it is steep. What we really
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Figure A-1: Input-oriented nearest-neighbor NMO. This form places a 1 in each column of
the matrix.
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Figure A-2: Output-oriented nearest-neighbor NMO. This form places a 1 in each row of the
matrix.
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want is to have a “footprint” in both input and output spaces (Jon Claerbout, pers. comm.).
I believe another way to express this is that the interpolation coefficients should generally be
laid neither vertically nor horizontally within the matrix. Instead they might be aligned locally
tangent (or perpendicular?) to the NMO curve within the matrix. I have not yet pursued this
line far enough to report success or failure. Francis Muir suggests splitting up the NMO into
a cascade of two pieces, each applying half the NMO. Half the NMO means NMO with a
velocity

√
2 higher than normal. There are a number of ways this could be done by combining

two of the following operators:
NMO
INMOT

INMO−1

[NMOT ]−1

[NMO−1]T

An obvious choice is to do half input-oriented plus half output-oriented processing, that is,
NMO INMOT or INMOT NMO. These choices are illustrated in Figures A-3 through A-6.
As we see from the results of processing the constant-amplitude synthetic, output-oriented
nearest-neighbor normal moveout has the best response. This is also apparent on the corre-
sponding seismic traces. Unfortunately, NMO differs from windowed processing — we
cannot directly apply the constant-amplitude synthetic results as a weighting function to cor-
rect the amplitude “glitches” on the data trace. The reason is clear upon inspecting the data
traces — the anomalous trace amplitudes are nowhere near two or more times larger than sur-
rounding values. The proper weights are frequency-dependent. This fact does not mean the
idea of splitting up the NMO into pieces is a bad one — but it does strongly suggest that good
combinations will be implicit, not explicit, ones. This, too, remains to be explored.



16 Levin SEP–80

Figure A-3: A variety of NMO combinations applied to a constant-amplitude synthetic.
stew1-synf [ER]
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Figure A-4: A variety of NMO combinations applied to a field data trace.stew1-fldf [ER]
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Figure A-5: A variety of inverse NMO combinations applied to a constant-amplitude synthetic.
stew1-syni [ER]
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Figure A-6: A variety of inverse NMO combinations applied to a field data trace.stew1-fldi
[ER]


