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An investigation into eliminating surface
multiples

Yetmen Wang and Stewart A. Levin

ABSTRACT

Since the earliest days of the Stanford Exploration Project, the elimination of
free-surface marine multiples has been a target of processing research. In recent
years the plane-wave methods of Riley and Claerbout (1974) have been superseded
by fully two- and three-dimensional extensions of the method at Delft University
(Verschuur et al., 1988). Alternative derivations of the newer approach have also
been put forth by Dragoset and McKay (1993) using Kirchhoff integral theory
and by Carvalho et al. (1991) based on scattering theory. Interestingly, there is
an apparent disagreement among the various approaches regarding the correct
formulation of the algorithm. '

In this paper we first develop our own mathematical derivation in order to clarify
the method. Using Green’s identity, the solution of the inhomogeneous acoustic
wave equation without free surface reflection is implicitly expressed as a Fredholm
integral equation of the second kind. The associated kernels can be found by up-
going and down-going wave decomposition. We then show by means of a simple
but instructive example that solving the implicit integral equation by a Neumann
series is numerically unwise, despite the fact that the series reduces to a finite
sum, and argue for a treatment of the implicit relation by optimization methods.
Finally we outline our plans to tackle this optimization within the framework of
the C++ linear operators (CLOP) machinery recently developed at the SEP.

INTRODUCTION

In the very first SEP report, Riley and Claerbout proposed a seminal idea for
elimination of free-surface generated multiple reflections from marine data (Claer-
bout, 1974; Riley, 1974). For a one-dimensional earth the idea is particularly simple
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to grasp: the Z-transform response C(Z) of the earth without the free-surface is illu-
minated in the real earth by the superposition of a downgoing source S(Z) and the
reflected upcoming signal D(Z) = —U(Z). Mathematically this translates into a the
purely algebraic relationship

U=(S-U)C (1)

between the recorded data and the impulse response of the desired earth model with-
out the free surface. We can check this formula for the simple case of a water layer
over a uniform halfspace. If we denote the two-way vertical traveltime to the seafloor
by Z*, then the upcoming reverberation train caused by an impulsive (plane wave)
source is given by t

- 1:Zth @)
where r is the seafloor reflection coefficient (Backus, 1959). Plugging U into equation
(1) along with the impulsive source S = 1, we get the equation

A A
1+rZt (1” 1+th> c@ 3)
which simplifies to the explicit solution
rZt=0(2) , (4)

the expected primary reflection off the seafloor.

WAVEFIELD SEPARATION

Essential to the foregoing argument is the ability to decompose the recorded pres-
sure data P(Z) into the sum U(Z) + D(Z) of upcoming and downgoing waves. The
concept of upcoming and downgoing wave decomposition is powerful in analyzing
surface multiples in higher dimensions as well. A number of authors have given algo-
rithms for this decomposition in the special, but often useful, case of total field and /or
gradient measurements on one or more parallel datum planes (Filho, 1992; Berkhout,
1985). In this case the derivatives of the up and down components are given by the
constant-velocity, one-way wave operator in the frequency-wavenumber domain, and
simple phase shifts are used to align the components to a reference datum plane.

Mathematically, the decomposition can be described by appropriate application of
Green’s identity. The advantage is that by properly choosing the reference wavefield,
one can write down the decomposed wavefield by means of an integral equation; the
integration only involves surface integrals on either the free surface or the source-
receiver plane. While further measurements can improve the stability and accuracy
of the decomposition (Sonneland et al., 1986; Monk, 1990), the scheme we use is
applicable to conventional marine recording on a single datum plane.

Suppose that, in a source-free region, the recorded pressure data F' on S; (Figure
1) are to be decomposed into downgoing wave D; and upcoming wave Uy; that is,

F=U+D, . (5)
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Kirchhoff integral theory says the upcoming wave Uy on So can be related to U; by
Uy = gnUl ’ (6)

where ¢, is the Rayleigh integral operator of a dipole source distribution on 5y
(Berkhout and Palthe, 1979). (The detailed mathematical derivation will be given in
this paper.) Since the total presure vanishes at the free surface Sy, the downgoing
wave Dy is equal to the opposite of upcoming wave Uy. Mathematically,

Do=-Up . (7)

Again using the Rayleigh integral of the second kind, the downgoing wave D; on S;
is related to Dg as follows:

D, = G, Dy (8)

with another integral operator G, (which is actually g, the adjoint operator of g, for
a horizontal datum). Solving for U; from relations (6)-(8), we have

U1=F+GngnUl ) (9)

which leads to
Uy =[I-Gng] ' F . (10)

In the section on “Redatuming” we derive the associated quantities G,, and g, and
include the effects of a source in the region between Sy and 5.

DELFT’S SURFACE-RELATED MULTIPLE ELIMINATION

To extend the one-dimensional Noah demultiple algorithm to two (or three) di-
mensions requires the complete seismic experiment, that is, the data as a function of
shot location and receiver position at (or very near) the earth’s surface. Heuristically,
the response.of the earth to upcoming energy reflected from the free surface at any
given location can be obtained by convolving that downgoing trace with the recorded
impulse response of the earth for a (suitably preprocessed) source at the exact same
location. The result is again a simple relationship,

U(r,s) = S(s) «C(r,s) —/U(r',s) « C(r,r')dr’ | (11)

coupling the impulse response C(r,s) for receiver location r and source location s on
the desired earth model with the upcoming wavefield recorded in the presence of the
free surface.

A more precise derivation uses a Rayleigh integral of the second kind to perform
pressure-to-pressure extrapolation. Denote the inhomogeneous Green’s function for
the earth without the free surface by Go(x,t;x’,¢'). In this the primed coordinates
reflect the source position, the unprimed the receiver location. The Rayleigh integral

SEP-80



Wang and Levin 592 Surface multiples

tells us the response of the earth to a reflected upcoming wave —U(x, t) is, neglecting
factors of 7, given by

—-//50 n( x,tx,t") dx'dt" | (12)

that is, the reflected wavefield is equivalent to a superposition of dipole sources. If
we continue to restrict our analysis to the surface of the earth Sy, the analogue of
formula (1) becomes

Ux,t) = / S(t")Gol(x, t; X5, ') / /5 (', ) n( x, ;%) dx'dt (13)

for the relation between the response U of a surface source at location X, on the free
surface and the desired impulse response without the free surface. This is essentially
the Delft formulation of surface-related multiple elimination. Surprisingly, a recipro-
cal result also holds when we interchange the roles of the wavefields with and without
the free surface, as the next section shows.

WESTERN’S SURFACE-RELATED MULTIPLE ELIMINATION

Following the development in Morse and Feshbach (1953), let us consider an acous-
tic wavefield as shown in Figure 1. At z = 0, the sea level is denoted by Sp; and at
z = z, the surface 57 is where the sources and receivers are located. The medium
between Sg and S; is purely water of constant wave speed. Receivers collect upcoming
signals from subsurface reflection and downgoing waves caused by surface reflection.

The inhomogeneous Green’s function G(x, t;x',t') satisfies the equation- -

1 0

O . ) = —mE(x = x)5(t - ¥) (14

V2G(x, t;x, ) —

with boundary conditions

Gls, =0 (15)
and
Glse =0 . (16)
Causality conditions imply that
G(x,t;x,t") = Gy(x,6:x,¢) =0 if t <t . (17)

The equation of wavefield without free surface reflection is

2

V3u(x,t) — 2 )at2 u(x,t) =

—4rq(x,t) (18)

with the initial condition
u(x,t)=0fort <0 . (19)
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2=0 So

Figure 1: Geometry of the free
surface, source, and receivers: Sg
and 51 denote the free surface
and source-receiver plane, respec-

tively. [NR]

Here u(x,t) is the solution without surface multiples and is what we are interested
in. To find u, we apply Green’s identity to obtain

o*
/ / (x,t';x',t)q(x,t)dxdt

1t o Ou(x,t) IG(x,t;x/ 1)
o /0 [ (G i 7 — e, ) )det
+1/ ! [u(x, £)Gi(x, 5 %', 1) — G(x, 5 %', Oue(x, O] dx (20
i ch()ux (%, 1%, x, 5%, u(x, 1))y dx .(20)

Since the tirhe interval of integration includes the final point ', a plus sign is added
for clarity.

The first term is the solution with free surface subjected to source function ¢(x,t).
Its value on surface S; is simply the recorded data. The third term vanishes because
of the initial conditions of u(x,t) and the causality conditions of G(x,t;x’,¢'). Since
G is zero on free surface, there’s only one term left in surface integral.

Approximately, the source function is of the form

q(x,t) = f1)é(x —x5) (21)
where X is the source location on S;. We can then rewrite equation (20) as

ot

tl
u(x,t)z/o G(xs,t;x,t)f dt———/ /So xt G(x,t';x',t)dSdt . (22)

SEP-80



Wang and Levin 594 Surface multiples

The first term on RHS of equation (22) is the solution with free surface. The second
term, according to Rayleigh’s integral, is the wave propagating down with surface
source function u(x,t) on Sp. Equation (22) thus states that the solution without
free surface is the solution with free surface minus the surface reflection. This we
identify as the formulation of Dragoset and McKay (1993).

It is useful to check the 1-D analogue of this relationship for the seismogram (2).
The claim is that for an impulsive source S(Z) =1

C(Z)=U(Z) - C(2)U(Z) (23)

which is simply a rearrangement of equation (1).

SCATTERING FORMULATION USING GREEN’S IDENTITY

A third derivation of surface-related multiple attenuation is obtained from scatter-
ing theory (Carvalho et al., 1991). In that approach, all multiples, both free-surface
and interbed, appear as terms in an infinite expansion. Each individual term pre-
scribes one or more volume integrations over the whole subsurface. The terms directly
related to the free-surface, however, have the special property that they degenerate
into surface integrals.

In this section, we present a streamlined derivation of surface-related multiple
elimination from scattering theory. This leads to the Western formulation of surface-
related multiple elimination. For notational ease, the development is taken in Fourier
domain.

Define two acoustic operators associated with different space-dependent velocity
functions to be

Ls=V?+FE(x) (24)
and
. Lp=V"+k3(x) | (25)
where
k o
4(X) - CIZQ(X) (26)
and
En(x) = = (27)
p(x) =
ch(x)
Let G4 and Gg be solutions of
LaGa(x,x,w) = —476(x — X') (28)
and
LgGp(x,%x,w) = —47é(x — X) . (29)
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Then by applying Green’s identity to GgL 4G4 — G4 LpGp and taking the domain of
integration to be the lower half plane bounded above by the free surface Sy, we have

o 9Gs . 9G4 1 )
Ga— G "?EF[SO (GAfan——GB = )dS—E/VGAVGBdV (30)

where
V= k% — ki . (31)

V is termed the scattering potential and is formally defined as
V=Lp—Lys . (32)

Equation (30) relates two different wavefields by surface and subsurface reflections.
This equation is very general. By properly choosing the wavefields G4 and G and
the domain of integration, we can cancel selected terms. If the surface integral is
eliminated, the equation reduces to the Lippmann-Schwinger equation. (Carvalho et
al. work from this equation using the homogeneous Green’s function with free surface
and the inhomogeneous Green’s function with free surface.) Eliminating the volume
integral will lead us to Western’s formulation and if we take the values on receiver
plane Sy, it is identical to the scheme we develop in this paper. There is a case where
the individual terms G4 and Gp as well as the volume integral would disappear; the
equation then becomes the reciprocity relation < ¢,,G >=< G,,g > which is the
one we derive in this paper. The following subsections explore these options in more
detail.

Lippmann-Schwinger equation

Suppose we choose G4 to be the actual inhomogeneous Green’s function with free
surface Sp, that is,
Ga(x,x,w) = G(x,x",w) (33)
where G denotes the Fourier transform of G(x,t;x,t"). If we now set Gp to be a
known reference wavefield G,, also vanishing on surface Sy, then the surface integral
of equation (30) vanishes yielding

U 1 o~ ‘
G=6. - /V GVG.dv | (34)

or symbolically

G=G+<GIVIG> . (35)

(Note by specifying G4 and G, we mean the associated operators also change accord-
ingly.) This is so-called the Lippmann-Schwinger equation which relates the actual
wavefield and the reference wavefield. The integral term in equation (34) takes effect
whenever V is different from zero; that is, there will be subsurface contributions wher-
ever the actual velocity profile is different from the reference one. It then states that
the actual solution is the sum of the reference wavefield and subsurface interactions.
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Western formulation

Let G4 be G and Gp the inhomogeneous Green’s function éo(x,x’, w) without
free surface. Since there’s no difference between these two velocity profiles, the volume
integral in equation (30) vanishes. The free surface condition cancels the first term
of the boundary integral, leaving the simple relation

-~ 1 1 ~ 0G
Go=G—— | Go—=dS . 36
© 47 Js, *9n (36)
If we post-multiply this last equation by the source function f (w) and denote by @
the Fourier transform of the wavefield without the free surface u:

i(x,w) = Go(xs,%,w) f(w) (37)
then equation (36) becomes

. s: 110G
u—Gf—4—ﬂ_ Sou%dS . (38)

This is the Fourier transform of equation (22), the Western formulation.

Reciprocity relation

To obtain our reciprocity relation, take G4 to be G and G5 to be §, the homo-
geneous Green’s function ¢ in frequency domain. Specify the values of G and g on
Sy and S; respectively to vanish on the boundaries. Since the medium is the same
between Sg and Si, the volume integral in equation (30) is zero when the domain of
integration is taken to be between these two surfaces. What left is only the surface
integral. Segregating the contributions of the two planes, we have

< Gpyg >5,=<G,gn >s, , (39)

which is our reciprocity formula (54).

REDATUMING

We do not record our total pressure at the free surface, of course. Nor do we inject
an impulsive source there either. This section reformulates our relationship (22) for
pressure recorded on datum S; with a source located in the region between S; and
Sg, the typical marine configuration. ’

If we restrict x’ to the datum plane Sy, the first term in equation (22) is the
recorded data. (Note that G(x;,t';x',t) = G(x',t';X;,t) and the first term is just the
time convolution of Green’s function and the source function.) Symbolically equation
(22) is written as

Uy = F -+ Gnuo P (40)

where u; and ug denote wavefields on Sy and S;, F' is known data, and G, the
associated integral operator.
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The next step is to find ug in terms of u;. This can be done by applying Green’s
identity again.

The domain of interest is the upper half space bounded below by surface Sy. The
wave velocity cg is constant in the domain, and the homogeneous Green’s function
g(x,t;x', ') of interest to us is defined as the solution of

52
Vig — El—z-g—tg = —4ré(x — x)o(t —t') +4ré(x —x*)o(t —t) (41)
0

where x’ is located in the region between So and S; and x* is the image source
location such that g vanishes on surface S;. Manipulating v and ¢ following the same
procedure yields

ot

J/ fgl w(x, )2 X’ﬂ’x 99, B5%0) jsay (42)

If x’ is taken to be on Sy, equation (42) can be symbolically written as
=g (43)
The implicit integral equation then becomes
uy = F + Grgnur (44)
which is a Fredholm integral equation of the second kind.

Evaluation of GG,

The domain of interest in evaluating G, is the region bounded by surface Sy and
S1. Since the source locations are restricted to be on S;, the wave equation of GG
becomes

1 92
2 . / RS Y AN

\Y G(X,t,X,,t) — ZgﬁG(X,t,X,t) =0 (45)

with boundary conditions
Gls, =0 (46)
Gls, = Gs, (47)

and causality conditions

G(x,4x,t) = Gux, t;x,¢) =0if t < t' . (48)

Note that x' € S and Gg, is a known function.

Next we take g defined in equation (41) as the reference field and rewrite it as

2 _1829

S = —Am8(x — X)8(t — 1) + dm8(x — X6t ~ 1) - (49)
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The image source at x = X* ensures that ¢ vanishes on 5;. Note also that X is in
between Sy and S;, and X* is below S7. In addition to the causality conditions

9(x, %) = gi(x,6;%,1) =0 if t <, (50)

we impose the condition that the initiation time of g is later than the time of G, that
is,

gx,tx,t)=01ift < t' . (51)
We then apply Green’s identity and take the integration domain V’ between Sy and
Sy. This produces the integral relation

2 _19G, e, 10%
/t / xtxt)(VG(,, V)= )~ (Vi = g gadxdi
8g 7+
/t / g— - Gg2dSdt - : 96 — Ggi-dx . (52)
0

The last term vanishes because of the causality conditions and equation (51). S is
composed of Sy and Sp. Rewriting equation (52), noting the zero boundary conditions
of G and g on Sy and 57, we have

/ / (%, ,xt (xtx t')dSdt
= So
o dg, _ _
= 4nG(x, T %) + /S (5%, )52 (%, G X, t)dSdt (53)
ti—= 1

Since x’ is on Sy, for clarity we replace it by x;. If we restrict X to be on Sy and
denote it by Xo, G(Xo,%;X1,t) is zero. In that case equation (53) becomes

/ / %, % %o, ) G(x,t,xl, )dSdt = / / (x, 1530, ) 22 (x, T xo, £)dSd .
= J S, = Js 8

(54)
We can obtain 22 if we notice that the inverse operator of the homogeneous Green’s
function ¢ is the wave operator itself. Thus

oG, - , & g1
%—(XOJt; X17t )650 = ‘/t_ /Sl G(X7t;xlat, L (x0,8) on (X £ 3 X0, )det ’ (55)

where g, is the homogeneous free space Green’s function without the image source,
and L =V?- 12

2 at2

BINOMIAL EXPLOSION

One direct way to solve for the data without free-surface multiples is to use a
Neumann series expansion in terms of the (deconvolved) data with free-surface reflec-
tions. The key observation of Verschuur et al. is that, owing to the finite recording
length of the data and the delay between the source initiation and the first reflected
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arrival, the infinite series is actually finite. What is perhaps less clear is that the
Neumann expansion is a severely unstable process!

To see this, we again consider the 1-D example from equation (2). The Neumann
series for the solution of equation (1) takes the form

C=U+0P+0P+04+ - (56)

where U is the deconvolved seismogram S~1U. Suppose we want to use the first few
terms of this series to suppress multiple energy. Expanding the series in terms of the
seismogram given in equation (2) produces the sum of seismograms:

Pt _p2Z2t L g3t _ pdpat 4 Sgst 676t 4 TyTt
+ T.2Zzt —27‘3Z3t +3T4 Z4t _4,,.5 ZSt + 5,,.6261& _ 67’7Z7t +-.
+ r3Z%  _3rtZ% 6r°Z% 10075 +1577Z27F —..
+ rdZ4  —4pS 75 4100525 200727 +--- (B7)
+ T5 ZSt _ 5T626t + 57.7277: ..
+ P76t _ GrTZTt ..
+ ')"7Z7t .
whose partial sums are
So = gzt __p272 +T‘3Z3t — piz4 + rS75 7.6ZGt + T'7Z7t ..
Sl — T’Zt _7.3z3t +27‘4Z4t —37’5Z5t +4T‘6Z6t _ 5T'7Z7t +--
S, = rZzt — piz% 43p575%  _6r878 4100777 —
Sy = rZt — 575 14r8780 1007770 4.
Sy = rZt — 878 4 5p7Z70 ..
Ss = rZt — 77 4.
56 = rZt .
(58)

which eventually produces the desired seismogram rZ*, but only after an initial wildly
oscillating amplification of higher order multiples. In general, the column of coeffi-
cients for 7™ Z™ in (57) is the series of binomial coefficients (—1)™~1~ (m]'l) The
sums can be.evaluated explicitly using the relation

Se(p) = (") (59)

k=0 m

Applying this relation to the m’th order reflection, we find, using the central limit
theorem, that the maximum partial sum has the approximate magnitude 2™ 2r™

/ 1/27(m — 2), which has overcompensated the actual multiple magnitude r™ by a

gigantic factor.

Vincent Broman(broman@nosc.mil), in response to a na-net query on whether an
alternative polynomial expansion could be used, e.g. Chebyshev polynomials, showed
that no data-independent polynomial expansion can keep the higher order multiples
from being overestimated. He calculated that given any proposed polynomial

P(U)=a0U0+alU1+a2U2+...+amUm , (60)
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the coefficient of Z™ is given by

r" Z ap—1""% (n B 1> (61)
= k-1

which clearly increases for large n.

This result tells us that although the Fredholm equation can be solved by Neu-
mann’s series, doing so is not a particularly good way to approach the problem.
Instead a data-adaptive method must be used. In addition, the finite aperture of
our recorded data introduces further artifacts. Therefore we suggest that instead of
attacking an equation, it is better to find uy minimizing ||(Gngn — I)us + F||. This
optimization problem can be tackled using any of a variety of algorithms. Right now,
though, we do not know which one will be most robust. The thing to do first, then,
is to implement the basic linear operations in our formulas. By casting them as C4++
building blocks, we can use the CLOP tools (Nichols et al., 1993) to implement any
of a wide variety of linear solvers and optimization methods without rewriting the
geophysical subroutines each time. To this end, a student in Gene Golub’s SCCM
program will be working with SEP during the spring quarter to resurrect and enhance
the CLOP framework and toolkit.

CONCLUSIONS

In this study we have clarified the theoretical basis for surface-related multiple
elimination. We have shown that the Delft and Western formulations are actually
different, not contradictory, and have adapted them to handle the case where the
sources and receivers are on a datum plane below the free surface.

By means of a simple 1-D example we showed that the Neumann series eﬂgorithm
for surface-related multiple suppression is not a good choice for data processing and
suggest alternatives that we intend to explore.
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