Next: SOLVING THE CAUCHY PROBLEM
Up: Fomel: Offset continuation
Previous: Acknowledgments
- Bagaini, C., and Spagnolini, U., 1993, Common shot velocity analysis by shot continuation operator: 63th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 673-676.
-
- Bagaini, C., Spagnolini, U., and Pazienza, V., 1994, Velocity analysis and missing offset restoration by prestack continuation operators: 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1549-1552.
-
- Bale, R., and Jakubowicz, H., 1987, Post-stack prestack migration: 57th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, Session:S14.1.
-
- Berg, L. A., 1985, Prestack partial migration: Presented at the EAEG Meeting.
-
- Beylkin, G., 1985, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform: Journal of Mathematical Physics, 26, 99-108.
-
- Biondi, B., and Chemingui, N., 1994a, Transformation of 3-D prestack data by azimuth moveout (AMO): 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1541-1544.
-
- Biondi, B., and Chemingui, N., 1994b, Transformation of 3-D prestack data by Azimuth Moveout: SEP-80, 125-143.
-
- Black, J. L., Schleicher, K. L., and Zhang, L., 1993, True-amplitude imaging and dip moveout: Geophysics, 58, no. 1, 47-66.
-
- Bleistein, N., 1990, Born DMO revisited: 60th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1366-1369.
-
- Bolondi, G., Loinger, E., and Rocca, F., 1982, Offset continuation of seismic sections: Geophys. Prosp., 30, no. 6, 813-828.
-
- Chemingui, N., and Biondi, B., 1995, Amplitude preserving AMO from true amplitude DMO and inverse DMO: SEP-84, 153-168.
-
- Courant, R., 1962, Methods of mathematical physics: Interscience Publishers, New York.
-
- Deregowski, S. M., and Rocca, F., 1981, Geometrical optics and wave theory of constant offset sections in layered media: Geophys. Prosp., 29, no. 3, 374-406.
-
- Fomel, S., and Biondi, B., 1995, The time and space formulation of azimuth moveout: SEP-82, 25-37.
-
- Fomel, S. B., 1994, Kinematically equivalent differential operator for offset continuation of seismic sections: Russian Geology and Geophysics, 35, no. 9, 122-134.
-
- Fomel, S., 1995, Amplitude preserving offset continuation in theory. Part 1: The offset continuation equation: SEP-84, 179-196.
-
- Goldin, S. V., 1988, Transformation and recovery of discontinuities in problems of tomographic type: Institute of Geology and Geophysics, Novosibirsk (in Russian).
-
- Goldin, S., 1990, A geometric approach to seismic processing: the method of discontinuities: SEP-67, 171-210.
-
- Gradshtein, I. S., and Ryzhik, I. M., 1994, Table of integrals, series, and products: Boston: Academic Press.
-
- Hale, I. D., 1983, Dip moveout by Fourier transform: Ph.D. thesis, Stanford University.
-
- Hale, D., 1984, Dip-moveout by Fourier transform: Geophysics, 49, no. 6, 741-757.
-
- Hale, D., 1991a, A nonaliased integral method for dip moveout: Geophysics, 56, no. 6, 795-805.
-
- Hale, D., 1991b, Course notes: Dip moveout processing: Soc. Expl. Geophys., Tulsa.
-
- Liner, C. L., and Cohen, J. K., 1988, An amplitude-preserving inverse of Hale`s DMO: 58th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1117-1120.
-
- Liner, C., 1990, General theory and comparative anatomy of dip moveout: Geophysics, 55, no. 5, 595-607.
-
- Liner, C. L., 1991, Born theory of wave-equation dip moveout: Geophysics, 56, no. 2, 182-189.
-
- Notfors, C. D., and Godfrey, R. J., 1987, Dip moveout in the frequency-wavenumber domain (short note): Geophysics, 52, no. 12, 1718-1721.
-
- Ronen, S., Sorin, V., and Bale, R., 1991, Spatial dealiasing of 3-D seismic reflection data: Geophysical Journal International, pages 503-511.
-
- Ronen, J., 1987, Wave equation trace interpolation: Geophysics, 52, no. 7, 973-984.
-
- Ronen, S., 1994, Handling irregular geometry: Equalized DMO and beyond: 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1545-1548.
-
- Schwab, M., 1993, Shot gather continuation: SEP-77, 117-130.
-
- Stovas, A. M., and Fomel, S. B., 1993, Kinematically equivalent DMO operators: Presented at the SEG-Moscow.
-
- Watson, G. N., 1952, A treatise on the theory of Bessel functions: Cambridge University Press, 2nd edition.
-
A
Stanford Exploration Project
11/12/1997