ABSTRACTThe application of azimuth moveout (AMO) to a marine 3-D data set shows that by including AMO in the processing flow the high-frequency steeply-dipping energy can be better preserved during partial stacking over a range of offsets and azimuths. Since the test data set requires 3-D prestack depth migration to handle strong lateral velocity variations, the results of our tests support the applicability of AMO to prestack depth imaging problems. |