Next: About this document ...
Up: Ecker, et al.: Hydrate
Previous: CONCLUSIONS
- Dvorkin, J., and Nur, A., 1993, Rock physics for characterization of gas hydrates: The Future of Energy Gases, U.S. Geol. Survey Professional Paper 1570, pages 293-298.
-
- Dvorkin, J., and Nur, A., 1996, Elasticity og High-Porosity Sandstones: Theory for Two North Sea Datasets: Geophysics, 61, 1363-1370.
-
- Ecker, C., Dvorkin, J., and Nur, A., 1996, Sediments with gas hydrates: Internal structure from seismic AVO: Geophysics, submitted for publication.
-
- Ecker, C., 1997, Characterization of a hydrate reservoir: SEP-94, 1-15.
-
- Korenaga, J., Holbrook, W. S., Singh, S. C., and Minshull, T. A., 1997, Natural gas hydrates on the southeast U.S. margin: Constraints from full-waveform and travel time inversions of wide-angle seismic data: Jour. Geophys. Res., 102, 15345-15365.
-
- Lee, M. W., Hutchinson, D. R., Dillon, W. P., Miller, J. J., Agena, W. F., and Swift, B. A., 1992, A method of estimating the amount of in situ gas hydrates in deep marine sediments: USGS Open File Report, 276.
-
- Lumley, D. E., and Beydoun, W. B., 1993, Angle-dependent reflectivity estimation by Kirchhoff migration/inversion: Theory: SEP-79, 205-226.
-
- Matsumoto, R., Paull, C., Wallace, P., and the Leg 164 Scientific party, 1996, Gas hydrate sampling on the Blake Ridge and Carolina Rise: ODP, Leg 164 Preliminary Report.
-
- Mindlin, R. D., 1949, Compliance of elastic bodies in contact: Trans. ASME, 71, A-259.
-
- Murphy, W. F. I., 1982, Effects of microstructure and pore fluids on the accoustic properties of granular sedimentary materials: Ph.D. thesis, Stanford University.
-
- Sholl, D. W., and Hart, P. E., 1993, Velocity and amplitude structure on seismic-reflection profiles- possible massive gas-hydrate deposits and underlying gas accumulations in the Bering Sea: The Future of Energy Gases, U.S. Geo. Surv. Prof. paper 1570.
-
- Wood, W. T., Stoffa, P. L., and Shipley, T. H., 1994, Quantitative detection of methane hydrate through high-resolution seismic velocity analysis: J. Geophys. Res., 99, 9681-9695.
-
- Wood, A. B., 1941, A text book of sound: New York, MacMillan.
-
- Wyllie, M. R. J., Gregory, A. R., and Gardner, G. H. F., 1958, An experimental investigation of factors affecting elastic wave velocities in porous media: Geophysics, 23, 459-493.
-
- Yuan, T., Hyndman, R. D., Spence, G. D., and Desmons, B., 1996, Seismic velocity increase and deep-sea hydrate concentration above a bottom-simulating reflector on the northern Cascadian slope: Jour. Geophys. res., 101, 13655-13671.
-
A
The Parameters Sn and Stau are calculated as follows:
![\begin{eqnarray}
S_n&=&\:A_n (\Lambda_n)\:\alpha^2\:+\:B_n (\Lambda_n)\:\alpha\:...
...pha& = &\: \left[{{2\:S_h\:\phi}\over{3\:(1-\phi)}}\right ]^{0.5};\end{eqnarray}](img21.gif)
where G and
are the shear modulus and Poisson's ratio, respectively,
of the sediment.
The hydrate properties are given by its shear moduli Gh and
Poisson's ratio
. The parameter
is the ratio of the cemented
contact radius to the grain radius in case of hydrate evenly enveloping the
sediment grains.
B
Here we give the calculation parameters for the sediment, hydrate, water,
and gas properties used in the forward modeling approach.
Substance |
Bulk Modulus [GPa] |
Shear Modulus [GPa] |
Density [g/cm3] |
Calcite |
76.8 |
32 |
2.71 |
Clay |
20.9 |
6.85 |
2.58 |
Quartz |
36 |
45 |
2.65 |
Water |
2.5 |
|
1.032 |
Pure Hydrate |
5.6 |
2.4 |
0.9 |
Gas |
0.1 |
|
0.235 |
Table 1: Properties of sediment mineralogy, water, gas and pure hydrate and
C
Here we describe the calculation parameters used for the synthetic modeling.
Layer |
Thickness [km] |
Saturation (Model 1) |
(Model 2) |
(Model 3) |
Water |
3.315 |
100% brine |
|
|
Brine sediment |
0.2 |
100% brine |
|
|
Hydrate sediment |
0.3 |
31% |
23% |
0.08% |
Gas sediment |
0.3 |
2% gas |
|
|
Brine sediment |
0.5 |
100% brine |
|
|
Table 2: Model used to calculate synthetic seismograms.
Next: About this document ...
Up: Ecker, et al.: Hydrate
Previous: CONCLUSIONS
Stanford Exploration Project
10/9/1997