The analysis to follow requires two main steps for each of the examples to be presented. The first step involves recovering the elastic result for the case when the pore pressure vanishes, i.e., for the drained porous frame. Then, Eqs.(strain) and (effectivestress) imply, when pf = 0, that
_pq = S_pqrs_rs.
Therefore, this step is completely equivalent to
the analysis already presented in Berryman and Berge (1996).
I will present these results (along with
quick derivations for the sake of completeness) because
the results are needed to understand the second step of the
analysis in each case. The second step is to derive the
equivalent effective medium theory expression for
, or equivalently for the Biot-Willis parameter
.
The general result I use for the drained analysis takes the form [see Eq.(19) of Berryman and Berge (1996)]
(^*-^(r))v_i ^ri_r =
v_i(^(i)-^(r))^ri_r,
where
is the effective stiffness matrix (inverse of the compliance
matrix
) to be determined,
is the stiffness
matrix of some convenient elastic reference material,
vi is the volume fraction and
the stiffness matrix of the ith constituent of
the elastic composite,
is the strain in the reference
material, and
is the (exact and generally
unknown) linear coefficient relating strains in material i to those in
material r according to
.